dxdt
Memorandum of Calculus Math
Cat: SCI
Pub: 2020
#2011
compiled by Kanzo Kobayashi
20710u
Original resume
Remarks
>Top 0. Preface:
- Infinitesimal:
- In 17C, when calculus was discovered by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716), lots of criticism occurred. One of the prominent critic was Bishop George Berkeley(1685-1753), wrote, "infinitessimals are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"
- For example such that: let dx be an infinitesimal. Then 2dx is also infinitesimal. Therefore 1dx=12dx. Dividing both sides by dx, which is not zero; we have a proof that 1=12
- In 1960's, Abraham Robinson (1918-1974) had shown that it was possible to construct a self-consistent number system that included infinite and infinitesimal numbers; called hyperreal number system which includes the real numbers as a subset.
- we have at least three levels to the hierarchy: 1) infinities comparable to H, 2) finite numbers, and 3) infinitesimal compared to 1H
- Division by zero is undefined. However, we can divide a finite number by an infinitesimal, and get an infinite result.
- Followings are tips for solving integrals:
- ★: Remember important integral formula to lower order of the function.
- H: Get wise hyperbolic function:
- ℮: Use exponential-logarithum:
- ▲: Replace with proper trigonometry to make simpler rationalization.
- ♦:Find proper substitution to make simpler function.
- ✦: Focus on combination of derivative and its original function:
- ♥: Follow integration by parts, selecting proper side of terms to make easier integrals.
- ||: Be careful about absolute value
- ♣: Consider fractional function
- ◐: Be attentive to symmetric function:
- ♠: Imagine King property (special case)
- ♺: Notice recursive function
- n-1: Never forget recurrence relation
- ✔: Pay attention to parametric function
- β: Picture beta function
- G: Recall Gaussian function
0. 序文:
- pelmanism: 神経衰弱
- Integral is like a card game Pelmanism:
★H℮▲♦✦♥||♣◐♠♺n-1✔βG, and more.
>Top 1. Important formulas (★):
- Some Calculus formula:
- y=fglny=ln(fg)=lnf+lngy′y=f′f+g′gy′=f′g+fg′
- y=(fg)
lny=lnfg=lnf−lngy′y=f′f−g′gy′=f′g−fg′g2=f′g−fg′g2
- (ex)′=ex
- (ax)′=axlna
- y=ax→lny=xlna→y′y=lna
- y=(xx)′
lny=xlnx
y′y=lnx+1y′=y(lnx+1)=xx(lnx+1)
- (lnx)′=1x
- (lny)′=y′y
- (lnax)′=(lnxlna)′=1lna(lnx)′=1xlna
- (sinx)′=cosx
- (cosx)′=−sinx
- (tanx)′=1cos2x=sec2x
- (sinx(cosx)−1)′=cosx(cosx)−1)+sinx(−1)cos2x(−sinx)=1+tan2x
- (1tanx)′=(cotx)′=−1sin2x=−csc2x
- (sin−1x)′=1√1−x2
- (x)′=(siny)′→1=y′cosy→cosy=√1−sin2y=√1−x2
- (cos−1x)′=−1√1−x2
- cosy=±√1−sin2y=±√1−x2;(−π2≤y≤π2)
- (tan−1x)′=11+x2
- y=xn→y(n)=n!
- y=sinx→y(n)=sin(x+n2π)
- y=cosx→y(n)=cos(x+n2π)
- y=ex→y(n)=ex
- y=ax→y(n)=ax(lna)n
- y=lnx→y(n)=(−1)n−1(n−1)!xn
- y=xex→y(n)=(x+n)ex
- (fg)(n)=n∑k=0nCkf(n−k)g(k)
=nC0f(n)g+nC1f(n−1)g′+⋯+nCn−1f′g(n−1)+nCnfg(n)
[Leipniz formula]
- ∫1√a2−x2dx=sin−1xa+C
- let: x=asint
- ∫1a2+x2dx=1atan−1xa+C
- let: x=atant
- <*Tips>
- alogax=x
- f(sinx)cosx→sinx=t
→dt=\cos xdx
- f(cosx)sinx→cosx=t
- f(tanx)1cos2x→tanx=t→1cos2xdx=dt
- f(sinx,cosx)...(*)
→tanx2=t
→sinx=2t1+t2
→cosx=1−t21+t2
→dt=1+t22dx→dx=21+t2dt
∫(∗)dx=f(2t1+t2,1−t21+t2)21+t2dt
- ∫lnxdx→∫1・lnxdx
- ∫π0xf(sinx)dx
=π2∫π0f(sinx)dx
- sin−1x=arcsinx:
- cos(arccosx)=x

1. 主要公式 (★):
- Basic: 基本
sin(π2−x)=cosx
cos(π2−x)=sinx
sin(x+π2)=cosx
cos(x+π2)=−sinx
sin(x+π)=−sinx
cos(x+π)=−cosx
- Addition formula: 加法定理
sin(a±b)=sinacosb±cosasinb
cos(a±b)=cosacosb∓sinasinb
tan(a±b)=tana±tanb1∓tanatanb
- Double angle formula: 倍角
sin2x=2sinxcosx
cos2x=cos2x−sin2x=2cos2x−1=1−2sin2x
tan2x=2tanx1−2tan2x
- Half angle formula: 半角
sin2x=12(1−cos2x)
cos2x=12(1+cos2x)=11+tan2x
tan2x=1−cos2x1+cos2x
- Tripple angle formula: 3倍角
sin3x=3sinx−4sin3x
cos3x=4cos3x−3cosx
(x=0: 4-3)
- (cosx+isinx)3=cos3x+3icos2xsinx
−3cosxsin2x−isin3x
=cos3x+isin3x
- Product-Sum formula: 積和
sinacosb=12(sin(a+b)+sin(a−b))
sinasinb=12(−cos(a+b)+cos(a−b))
cosacosb=12(cos(a+b)+cos(a−b))
- Sum-Product formula: 和積
sina+sinb=2sina+b2cosa−bs
sina−sinb=2cosa+b2sina−bs
cosa+cosb=2cosa+b2cosa−b2
cosa−cosb=−2sina+b2sina−b2
- Inverse trigonometric: 逆三角関数
(sin−1x)′=1√1−x2
(cos−1x)′=−1√1−x2
(tan−1x)′=11+x2
- (ln(sinx))′=(sinx)′sinx=cosxsinx
(ln|tanx|)′=1tanx1cos2x
=1sinxcosx
- cos(sin−1x)
=√1−{sin(sin−1x)}2
=√1−x2
- sin(sin−1x)=cos(cos−1x)
=tan(tan−1x)=x
sin(cos−1x)=cos(sin−1x)=
=√1−{cos(cos−1x)}2
=√1−x2
cos(tan−1x)=sin(cot−1x)
=1√1+x2
cos−1x=sin−1√1−x2
tan−1x=sin−1x√x2+1
>Top 2. Integral using Basic formula (★):
- [Basic xa]:
- ∫xadx=12xa+1+C,(a≠−1)
- ∫(ax+b)ndx=1a(ax+b)n+1n+1+C
- ∫1√1−(ax+b)2dx=1aarcsin(ax+b)+C
- ∫11+(ax+b)2dx=1aarctan(ax+b)+C
- ∫sin(ax+b)dx=−1acos(ax+b)+C
- ∫cos(ax+b)dx=1asin(ax+b)+C
- ∫(1+tan2(ax+b))dx=1atan(ax+b)+C
- ∫(1+cot2(ax+b))dx=−1acot(ax+b)+C
- ∫1a2+x2dx=1aarctan(1ax)+C
- ∫1a2+b2x2dx=1abarctan(bax)+C
- ∫1√a2−x2dx=arcsin(1ax)+C
- ∫1√a2−b2x2dx=1barcsin(bax)+C
- ∫1x=ln|x|+C,(a=1)
- ∫1x2=−1x+C,(a=−2)
- ∫√x=23x√x+C,(a=12)
- ∫1√x=2√x+C,(a=−12)
- ∫f′f=ln|f|+C
- ∫f0g0=f0g−1−∫f1g−1
- ∫f0g0=f0g−1−f1g−2+∫f2g−2
- [Samples]
- ¶∫√43x+1dx
from: ∫√xdx=23x√x
=3423(∗)√∗+C
- ¶∫1√1−3xdx
from: ∫1√x=2√x
=−23√1−3x+C
- ¶∫2cos2(5x−1)dx
from: ∫1cos2xdx=tanx
=25tan(5x−1)+C
- ¶∫1sin2x2dx
from: ∫1sin2x=−1tanx
=−2tanx2+C
2. 基本公式による積分 (★):
- ∫f(ax+b)dx=1aF(ax+b)+C
- General formula:
- limx→∞n∑i=1f(xi)Δx=∫baf(x)dx
- Important areas:
- ∫π0sinxdx=2
- ∫π20sinxdx=1
- ∫π20cosxdx=1
- Area with y-axis:
- Sy=|∫dcxdy|
- Length of a curve:
- L=∫ba√1+(f′(x))2dx
- Volume:
- V=π∫bay2dx
- Surface of 3D object:
- S=2π∫bay√1+(y′)2dx
>Top 3. Hyperbolic function (H):
- sinhx=ex−e−x2
- coshx=ex+e−x2
- tanhx=sinhxcoshx=ex−e−xex+e−x
- sinh−1x=ln(x+√x2+1)
- cosh−1x=ln(x±√x2−1)
- cosh2x−sinh2x=1Cf:[cos2x+sin2x=1]
- 1−tanh2x=1cosh2xCf:[1+tan2x=1cos2x]
- (sinhx)′=coshx
- =ex2−e−x2(−x)′=ex2+e−x2=coshx
- (coshx)′=sinhxCf:[(cosx)′=−sinx]
- (tanhx)′=1cosh2x
- sinh(x±y)=sinhxcoshy±coshxsinhy
- cosh(x±y)=coshxcoshy±sinhxsinhy (*)
- tanh(x±y)=tanhx±tanhy1±tanhxtanhy (*)
- ∫1√x2+adx=ln(x+√x2+a)+C,(a>0)
- ∫exsinxdx=12ex(sinx−cosx)+C)
- ∫excosxdx=12ex(sinx+cosx)+C)
- Sigmoid function:
- f(x)=11+e−ax,(a>0)
- f′(x)=ae−ax(1+e−ax)2=a1+e−ax(1+e−ax)−11+e−ax=af(x)(1−f(x))
- f(x)=11+e−ax=122e12axe12ax+e−12ax=12(1+tanh(12ax))
- Point:
- ∫1√x2+a2dx,∫√x2+a2dx
- let: x=a\sinh\theta
- or let: x+\sqrt{x^2+a^2}=t
- ∫1√x2−a2dx,∫√x2−a2dx
- let: x=a\cosh\theta
- or let: x+\sqrt{x^2-a^2}=t
- Sample:
- ¶1√1+x2dx...(*)
let: x=et−e−t2→et=x+√x2+1→t=ln(x+√x2+1)
→dx=et+e−t2dt
=∫1√1+(et−e−t)24et+e−t2dt
=∫1et+e−t2et+e−t2dt=∫dt
=t+C=ln(xL√x2+1)+C
- Cf:y=√a+x2→x2−y2=−1[hyperbola]
here: x=et−e−t2,[=sinht]
x=et+e−t2,[=cosht]
- (*)=∫1√sinh2t+1cosht=∫dt
- ¶∫√x2+1
let: x=sinht→dx=et+e−t2dt=coshtdt
let: e2t−2xet−1=0⇔et=x+√x2+1,(et>0)
⇔t=ln(x+√x2+1)
=∫√sinh2t+1coshtdt=∫cosh2tdt,(cosht>0)
=∫e2t+e−2t+24dt
=e2t−e−2t8+12t+C
- ¶∫21√x2−1
let: x=cosht→dx=et−e−t2dt=sinhtdt
let:
cosha=ea+e−a2=2
⇔(ea)2−4ea+1=0⇔ea=2+√3,(ea>1)⇔a=ln(2+√3)
=∫a0√cosh2t−1sinhtdt=∫a0√sinh2tsinhtdt
=∫a0sinh2tdt,(0<t<a→sinht>0)
=∫a0e2t−2+e−2t4dt
3. 双曲線関数 (H):
- x=coshθ,y=sinhθ
→x2−y2=1 [hyperbolic]
- eiθ=cosθ+isinθ
→cosθ=eiθ+e−iθ2
→sinθ=eiθ−e−iθ2i
>Top 4. Integral using Exponential-Logarithm (e):
- [Exponential-Logarithm]
- ∫exdx=ex+C
- ∫ax=axlna+C
- ∫axlnadx=ax+C
- ∫lnxdx=∫x′lnxdx=xlnx−x(lnx)′dx=xlnx−∫dx
=xlnx−x+C [\ln = 1・\ln]
- ∫1xlnadx=lnax
- [Samples]
- ¶∫s−23+7dx
from: ∫exdx=ex
=−32e−23+7+C
- ¶∫13x+2dx=
from: ∫1xdx=ln|x|
=13ln|3x+2|+C
- ¶∫58−53xdx
from: ∫axdx=axlna
=−3558−53xln5+C
4. 指数関数・対数関数の積分 (e):
- alogax=x
>Top 5. Integral using Trigonometry (▲):
- [Trigonometry (▲)]
- ∫sinxdx=−cosx+C
- ∫cosxdx=sinx+C
- ∫tanxdx=∫sinxcosxdx=−∫(cosx)′cosxdx
=−ln|cosx|+C
- ∫1tanx=∫cosxsinxdx=∫(sinx)′sinxdx=
=ln|sinx|+C
- ∫1cos2xdx=∫sec2xdx=∫(1+tan2x)dx=tanx+C
- ∫csc2xdx=−cotx+C
- ∫1cos2xdx=∫sec2xdx=∫(1+tan2x)dx=tanx+C
- ∫1sin2xdx=∫csc2dx=∫(1+cot2x)dx=−1tanx+C=−cotx+C
- ∫tanxsecxdx=secx+C
- ∫cotxcscxdx=−cscx+C
- ∫1x2+a2dx=1atan−1xa+C,(a≠0)
- ∫1√x2−a2dx=sin−1xa+C,(a>0)
- ∫1√x2+adx=ln|x+√x2+a|+C,(a≠0)
- ∫xndx=xn+1n+1+C,(m≠−1)
- [Samples]
- ¶∫1sin2xcos2xdx
from: 1=sin2x+cos2x
from: ∫1cos2x=−1tanx
=∫sin2x+cos2xsin2xcos2xdx=∫(1cos2x+1sin2x)dx=tanx−1tanx+C
- ¶∫sin2xcos2xdx
from: sin4x=2sin2xcos2x
=∫12∫sin4xdx=12(−14cos4x)+C
- ¶∫sin2xcos3xdx
from: sinacosb=12(sin(a+b)+sin(a−b))
=12∫(sin5x−sinx)dx=
- ¶∫sin3xdx
from: sin3x=3sinx−4sin3x
=14∫(3sinx−sin3x)dx=14(−3cosx+13cos3x)+C
- ¶∫cos3xdx
from: cos3x=−3cosx−4cos3x
=−14∫(3cosx+cos3x)dx
=−14(3sinx+13sin3x)+C
- ¶∫tan3dx
let: cosx=t→−sinxdx=dt
∫1−cos2xcos3xsinxdx=∫t2−1t3dt
- ¶∫cos4xdx=∫(cos2x)2dx
from:
cos2x+1=2cos2x
=14∫(cos2x+1)2dx
=14∫(cos22x+2cos2x+1)dx
from:
cos4x+1=2cos22x
=14∫{12(cos4x+1)+2cos2x+1}dx
=14∫{12cos4x+2cos2x+32}dx
- ¶∫cos5xdx
let: sinx=t→cosxdx=dt
=∫(1−sin2x)2cosxdx=∫(1−t2)2dt
- ¶∫xcos3x
from: cos3x=−3cosx+4cos3x
=14∫x(cos3x+3cosx)dx
=14{x(13sin3x+3sinx)−∫(13sin3x+3sinx)dx}
- ¶∫1cos3xdx
multiply cosx:→sinx=t→cosxdx=dt
∫cosxcos4x=∫cosx(1−sin2x)2dx=∫1(1−t2)2dt
=∫1(1+t)2(1−t)2dt=14∫{11+t+11−t+1(1+t)2+1(1−t)2}dt=
- ¶∫1cos4xdx
let: tanx=t→1cos2xdx=dt
- ¶∫1tan3xdx
let: \sin x=t\;→\cos xdx=dt
=∫cos2xsin3xcosxdx=∫1−sin2xsin3xcosxdx
=∫1−t2t3dt=∫(1t3−1t)dt
=−12t2−ln|t|+C
- ¶∫1sin4xdx
let: 1tanx=t→−1sin2xdx=dt
=∫(1+1tan2x)1sin2xdx=∫(1+t2)(−dt)
- ¶∫xsinxcosxdx=12∫xsin2xdx
here: ∫xsin2x=x(−12cos2x)−∫(−12cos2x)dx
- ¶∫sin3xcos5xdx
let: tanx=t→1cos2xdx=dt
=∫tan3x1cos2xdx=∫t3dt
- ¶∫10√1−x1+xdx
let: x=sinθ→dx=cosθdθ
=∫π20
5. 三角関数の積分 (▲):
- sin(π2−x)=cosx
- cos(π2−x)=sinx
- tan(π2−x)=cosxsinx=1tanx
- cos2x=2cos2x−1=−2sin2x+1
→2cos2x=cos2x+1
- cos2x=(cosx−sinx)(cosx+sinx)
- tan2x=2tanx1−tan2x
→tanx−1tanx=−2tan2x
- 1+tan2x=1cos2x
- 1+1tan2x=1sin2x
- sin(a+b)+sin(a−b)=2sinacosb
- sin(a+b)−sin(a−b)=2cosasinb
- cos(a+b)+cos(a−b)=2cosacosb
- cos(a+b)−cos(a−b)=−2sinasinb
- ∫sinaxdx=−1acosax
- ∫cosaxdx=1asinax
- ∫1cos2xdx=tanx
- ∫1sin2xdx=−1tanx
- Tips:
- 1(1+t)2(1−t)2=A1+t+B1−t+C(1+t)2+1(1−t)2
>Top 6. Trigonometry to Rational function (▲):
- Rationalization:
Pattern: ∫1cosxdx,∫1sinxdx
→∫1cosxdx=∫cosxcos2xdx=∫(sinx)′1−sin2xdx then:
- Pattern: ∫f(sinx)cosxdx
let: sinx=t →cosxdx=dt
- Pattern: ∫f(cosx)sinxdx
let: cosx=t →−sinxdx=dt
- Pattern: ∫f(tanx)1cos2xdx
let: tanx=t →1cos2xdx=dt
- Pattern: ∫1√a2−x2dx
let: x=asint→dx=acosdt
- =∫acost√a2−a2sin2tdt=∫acost|acost|dt
- Pattern: ∫1a2+x2dx
let: x=atant→dx=acos2tdt
- =∫1a2+a2tan2tacos2t=∫cos2ta2acos2tdt
- Pattern: f(sinx,cosx)
=∫f(2t1+t2,1−t21+t2)21+t2dt
let: tanx2=t
- →sinx=2t1+t2
- →cosx=1−t21+t2
- →tanx=2t1−t2
- →dx=21+t2dt
- ∵
- →\cos^2\frac{x}{2}=\frac{1}{\tan^2\frac{x}{2}+1}=\frac{1}{1+t^2}
- →\cos x=2\cos^2\frac{1}{2}x-1=\frac{2}{1+t^2}-1=\frac{1-t^2}{1+t^2}
- →\sin x=\tan x\cos x
=\frac{2t}{1-t^2}\frac{1-t^2}{1+t^2}=\frac{2t}{1+t^2}
- →\frac{dt}{dx}
=\frac{(\sin\frac{x}{2})'\cos\frac{x}{2}-\sin\frac{x}{2}(\cos\frac{x}{2})'}
{(\cos\frac{x}{2})^2}=\frac{1}{2}\frac{1}{\frac{1}{1+t^2}}
=\frac{1+t^2}{2}
- or, \tan\frac{x}{2}=t
→\frac{1}{2\cos^2\frac{x}{2}}=dt→\frac{1}{2}(1+\tan^2\frac{x}{2})dx
=dt→dx=\frac{2}{1+t^2}dt
- Pattern: \boxed{f(\sin^2 x,\; \cos^2 x)}
=\int f \bigl(\frac{t^2}{1+t^2},\;\frac{1}{1+t^2}\bigr)\frac{1}{1+t^2}dt
let: \tan x=t
- →\tan^2 x=t^2
- →\cos^2 x=\frac{1}{\tan^2x+1}=\frac{1}{1+t^2}
- →\sin^2 x=(\tan x\cos x)^2=t^2\frac{1}{1+t^2}=\frac{t^2}{1+t^2}
- →dx=\frac{1}{1+t^2}
- \tan x=t\;→\frac{1}{\cos^2x}dx=dt\;→dx=\cos^2xdt
=\frac{1}{1+t^2}dt
- [Samples]
- ¶\int \frac{1}{x^2+4}dx
let: x=2\tan t→dx=\frac{2}{\cos^2t}dt
here: \frac{1}{x^2+4}=\frac{1}{4(\tan^2t+1)}=\frac{1}{4}\cos^2t
→\int \frac{1}{4}\cos^2t\frac{2}{\cos^2t}dt=\frac{1}{2}\int dt
- ¶\int \frac{1}{x^2-2x+4}dx=\int \frac{1}{(x-1)^2+3}dx
let: x-1=\sqrt{3}\tan t\;→dx=\frac{\sqrt{3}}{\cos^2t}dt
=\int \frac{1}{3(\tan^2t+1)}dx=\int \frac{1}{3}\cos^2t\frac{\sqrt{3}}{\cos^2t}dt
- ¶\int \frac{1}{\cos x}dx
let: x=\tan\frac{t}{2}
=\int \frac{1+t^2}{1-t^2}\frac{2t}{1+t^2}dt=\int \frac{2}{1-t^2}dt
=\int (\frac{1}{1+t}+\frac{1}{1-t})dt=\ln|1+t|-\ln|1-t|+C
or: =\int \frac{\cos x}{\cos^2x}dx=\frac{\cos x}{1-\sin^2x}dx+C
- ¶\int \frac{1}{\sin x}dx
let: x=\tan\frac{t}{2}
\int \frac{1+t^2}{2t}\frac{2}{1+t^2}dt=\int \frac{1}{t}dt=\ln |t|+C
or: =\int \frac{\sin x}{\sin^2x}dx=\int \frac{\sin x}{1-\cos^2x}dx
let: \cos x=t→-\sin xdx=dt
=-\int \frac{1}{1-t^2}dt=-\frac{1}{2}\int (\frac{1}{1-t}+\frac{1}{1+t})dt+C
- ¶\int \frac{1}{\sin x+\cos x+1}dx
let: x=\tan\frac{t}{2}
=\int \frac{1}{\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}+1}\frac{2}{1+t^2}dt
=\frac{1+t^2}{2(t+1)}\frac{2}{1+t^2}dt=\int \frac{1}{t+1}dt=\ln |t+1|+C
- ¶\int \frac{\sin x}{\sin x+\cos x}dx
let: x=\tan\frac{t}{2}
=\int \frac{2t}{(2t+1-t^2)}\frac{2}{1+t^2}dt
=-4\int \frac{t}{(t^2+1)(t-1+\sqrt{2})(t-1-\sqrt{2})}dt
=-4\int \bigl\{\frac{At+B}{t^2+1}+\frac{C}{t-1+\sqrt{2}}
+\frac{D}{t-1-\sqrt{2}}\bigr\}dt\;[A=B=-\frac{1}{4}, C=D=\frac{1}{8}]
=\int \bigl\{\frac{t+1}{t^2+1}-\frac{1}{2(t-1+\sqrt{2})}
-\frac{1}{2(t-1-\sqrt{2})}\bigr\}dt
=\frac{1}{2}\ln(t^2+1)+\tan^{-1}t-\frac{1}{2}\ln|t^2-2t+1|+C...(*)
here: \tan(\tan^{-1}x)=x;\;\ln=|\frac{2t+(1-t^2)}{1+t^2}|=\ln|\sin x+\cos x|
(*)=\frac{1}{2}(x-\ln|\sin x+\cos x|)+C
- ¶\int \frac{1}{(1+x^2)^2}
let: x=\tan t\;→dx=\frac{1}{\cos^2t}dt
\int \cos^4t\frac{1}{\cos^2t}dt=\int \cos^2dt=\frac{1}{2}\int (1+\cos 2t)dt
- ¶\int \tan^3xdx
let: x=\tan t\;→dx=\frac{1}{1+t^2}dt
=\int t^3\frac{1}{1+t^2}dt=\int (1-\frac{t}{t^2+1})dt
=\int (t-\frac{1}{2}\frac{2t}{t^2+1})dt
=\frac{1}{2}t^2-\frac{1}{2}\ln (t^2+1)+C
- \int \frac{1}{x^3+1}dx=\int \frac{1}{(x+1)(x^2-x+1)}
=\frac{1}{3}\int (\frac{1}{x+1}-\frac{1}{2}\frac{(2x-1)-3}{x^2-x+1})dx
here: \frac{1}{x^2-x+1}=\frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}}
=\frac{4}{3}\cos^2t
let: x-\frac{1}{2}=\frac{\sqrt{3}}{2}\tan t→dx=\frac{\sqrt{3}}{2\cos^2t}dt
=\int \frac{4}{3}\cos^2t\frac{\sqrt{3}}{2\cos^2t}dt=\int \frac{2\sqrt{3}}{3}dt
- ¶\int \frac{\sqrt{\tan x}}{\sin 2x}dx
let: \sqrt{\tan x}=t\;→dt=\frac{1}{2\sqrt{\tan x}}\frac{1}{\cos^2x}dx
=\frac{1}{2t}\frac{1}{\cos^2x}dx
=\int \frac{t}{2\sin x\cos x}2t\cos^2xdt=\int \frac{t^2}{\tan x}dt=t+C
6. 三角関数の有理関数化 (▲):
- Tips: Lower order
- \sin x\cos x=\frac{1}{2}\sin 2x
- \sin^2x=\frac{1}{2}(1-\cos 2x)
- \cos^2x=\frac{1}{2}(1+\cos 2x)
- \tan^2x+1=\frac{1}{\cos^2x}
- \sin^3=\frac{3\sin x-\sin 3x}{4}
- \cos^3=\frac{3\cos x+\cos 3x}{4}
- \sin ax\cos bx
=\frac{1}{2}\{\sin (a+b)x+\sin (a-b)x\}
- \cos ax\cos bx
=\frac{1}{2}\{\cos (a+b)x+\cos (a-b)x\}
- \sin ax\sin bx
=-\frac{1}{2}\{\cos (a+b)x-\cos (a-b)x\}
>Top 7. Integration by Substitution (♦):
- [by Substitution (♦)]
- [Samples]
- ¶\int x^3(x^2-1)^4dx=\int x^2・x(x^2-1)^4dx
x^2-1=t\;→xdx=\frac{1}{2}dt
=\int (t+1)t^4dt=\frac{1}{2}\int (t^5+t^4)dt
- ¶\int \frac{2x^3}{(x^2+1)^2}dx=\int \frac{x^2・2x}{(x^2+1)^2}dx
x^2+1=t\;→2xdx=dt
=\int \frac{x^2}{(x^2+1)^2・2xdx}=\int \frac{t-1}{t^2}dt=\int (\frac{1}{t}-\frac{1}{t^2})dt
- ¶\int_1^2\frac{1}{(2x+1)^2}dx
=\frac{1}{2}\bigl[-\frac{1}{2x+1}\bigr]_1^2
- ¶\int \sqrt{\frac{1-x}{1+x}}dx
let:
\sqrt{\frac{1-x}{1+x}}=t\;→x=\frac{1-t^2}{1+t^2}\;→dx=
-\frac{4t}{1+t^2}dt
=\int t(-\frac{4t}{1+t^2})dx=-4\int \frac{t^2}{(1+t^2)^2}dt
let t=\tan\theta\;→dt=\frac{1}{\cos^2\theta}d\theta
=4\int \tan^2\theta\cos^4\theta\frac{1}{\cos^2\theta}d\theta
=4\int \sin^2\theta d\theta=\int 4\theta\frac{1-\cos 2\theta}{2}d\theta
- ¶\int \sin(\ln x)dx
let: t=\ln x\;→
x=e^t\;→dx=e^tdt
here: \int e^t\sin tdt=e^t\sin t-\int e^t\cos tdt
=e^t\sin t-\bigl(e^t\cos t+\int e^t\sin tdt\bigr)
\;→\int e^t\sin tdt=\frac{1}{2}e^t(\sin t-\cos t)+C
7. 置換積分法 (♦):
- *Tips:
- \int f'(ax+b)dx=\frac{1}{a}f(ax+b)+C
[Linear change of variable, 一次式置換型]
>Top 8. Integration by Substitution with differential-attached (✦)
- [by Substitution with differential-attached (✦)]
- [Samples]
- ¶\int \frac{e^x-e^{-x}}{e^x+e^{-x}}dx=\int \frac{*'}{*}dx=\ln (*)
- ¶\int \frac{\cos x}{1-\sin x}dx=-\int \frac{*'}{*}=-\ln (*)
- ¶\int \frac{2^x}{2^x+1}dx=\frac{1}{\ln 2}\int\frac{*'}{*}
- ¶\int \frac{1}{\sqrt{x}}(\sqrt{x}+1)dx
=2\int \frac{\frac{1}{2\sqrt{x}}}{\sqrt{x}+1}=2\int \frac{*'}{*}
- ¶\int x(x^2+1)^5dx=\frac{1}{2}\int 2x(x^2+1)^5dx
=\frac{1}{2}\int (*')(*)
- ¶\int \frac{1}{x^2}(1+\frac{1}{x})^2dx=-\int (*)'(*)^2
- ¶\int \frac{(\sqrt{x}+1)^5}{\sqrt{x}}dx=2\int (*')(*)^5
- ¶\int \frac{1}{\tan^2x\sin^2x}dx=-\int (\frac{1}{\tan x})^2(-\frac{1}{\sin^2x})dx
=\int (*^2)(*')
- ¶\int x^5\sqrt{x^3+1}dx=
let: x^3+1=t\;→3x^2dx=dt
=\int \frac{1}{3}(t-1)\sqrt{t}dt
- ¶\int \frac{\ln(ln x)}{x\ln x}dx
let: \ln x=t\;→\frac{1}{x}dx=dt
=\int \frac{\ln t}{t}, then:\;\ln t=u\;→\frac{1}{t}dt=du
=\int udu
- ¶\int \sin x\sin(\cos x)dx
let: \cos x=t\;→-\sin xdx=dt
=\int (-\sin x)\sin(\cos x)dx=-\int -\sin tdt
- ¶\int \frac{\tan x}{(\tan x-1)^2\cos^2x}dx
let: \tan x-1=t\;→\frac{1}{\cos^2 x}dx=dt
=\frac{t+1}{t^2}
- ¶\int \frac{e^{3x}}{\sqrt{e^x+1}}dx
let: e^x+1=t\;→e^xdx=dt
\int \frac{(e^x)^2e^x}{\sqrt{e^x+1}}=\int \frac{(t-1)^2}{\sqrt{t}}dt
- ¶\int \cos x\ln (\sin x)dx
let: \sin x=t\;→\cos xdx=dt
=\int \ln tdt=t\ln t-t+C,\; [< Tips]
- ¶\int 3^{x+3^x}dx
let: 3^x=t\;→3^x\ln 3dx=dt
=\int \frac{1}{\ln 3}・\ln 3・3^x・3^{3^x}dx=\frac{1}{\ln 3}\int 3^tdt
- ¶\int \frac{1}{\sqrt{x}\sin^2\sqrt{x}}dx
let: \sqrt{x}=t\;→\frac{1}{2\sqrt{x}}dx=dt
=\int \frac{2}{2\sqrt{x}\sin^2\sqrt{x}}dx=2\int \frac{1}{\sin^2t}dt
=\frac{2}{\tan t}+C
- ¶\int \frac{1}{x^2}(1+\frac{1}{x})^2dx
let: 1+\frac{1}{x}=t\;→-\frac{1}{x^2}dx=dt
=-\int t't^2dt=-\frac{1}{3}t^3+C
- ¶\int \frac{(\sqrt{x}+1)^5}{\sqrt{x}}dx
let: \sqrt{x}+1=t\;→\frac{1}{2\sqrt{x}}dx=dt
=2\int t^5dt
- ¶\int \frac{1}{\tan^2x\sin^2x}dx
let: \frac{1}{\tan x}=t\;→-\frac{1}{\sin^2x}dx=dt
=-\int t^2dt
- ¶\int \frac{1}{\sqrt{1-\sqrt{x}}}dx
let:
\sqrt{1-\sqrt{x}}=t\;→x=(1-t^2)^2\;→dx=2=4t(t^2-1)dt
=4\int \frac{t(t^2-1)}{t}dt=4\int (t^2-1)dt
- ¶\int_{\sqrt{2}}^{2}\frac{1}{x\sqrt{x^2-1}}dx
let: x=\sec\theta\;→dx=\sec\theta\tan\theta d\theta
and: x:\sqrt{2}→2;,\;\theta:\frac{\pi}{4}→\frac{\pi}{3}
from:
1+\tan^2\theta=\sec^2\theta
=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{1}{\sec\theta\sqrt{\sec^2\theta-1}}
\sec\theta\tan\theta
dx
=\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}d\theta=\frac{\pi}{12}
- ¶\frac{x^2}{(x\sin x+\cos x)^2}dx
here: (x\sin x+\cos x)'=\sin x+x\cos x-\sin x=x\cos x
=\int \frac{x}{\cos x}\frac{x\cos x}{(x\sin x+\cos x)^2}dx
=\bigl[-\frac{x}{\cos x}\frac{1}{x\sin x+\cos x}\bigr]
+\int
\frac{\cos x+x\sin x}{\cos^2x}\frac{1}{x\sin x+\cos x}dx
8. 置換積分法 (微分接触型) (✦):
- \int \frac{f'(x)}{f(x)}dx=\ln|f(x)|
- \int (f(x))^af'(x)dx
=\frac{(f(x))^{a+1}}{a+1},\;(a≠-1)
- f(\sin x)\cos x
- f(\cos x)\sin x
- f(\tan x)\frac{1}{\cos^2x}
- f(\frac{1}{\tan x})\frac{1}{\sin^2x}
- Tips-differential:
- (\tan x)'=\frac{1}{\cos^2x}
- (\frac{1}{\tan x})'=-\frac{1}{\sin^2x}
- (\frac{1}{x})'=-\frac{1}{x^2}
- (\sqrt{x})'=\frac{1}{2\sqrt{x}}
- (\ln x)'=\frac{1}{x}
- (a^x)'=a^x\ln a
- (a+\sin^2x)'=2\sin x\cos x=\sin 2x
- Tips-integral
- \int \ln x=x\ln x-x
- substitute to:
\sqrt{\frac{ax+b}{cx+d}}_n=t
- \frac{1-x}{1+x}=t^2
\;→x=\frac{1-t^2}{1+t^2}
>Top 9. Integration by Parts (♥):
- [by Parts (♥)]
- \int f^0g^0dx=f^0g^{-1}-\int f^1g^{-1}dx
=f^0g^{-1}-\{f^1g^{-2}-\int f^2g^{-2}\}
=f^0g^{-1}-f^1g^{-2}+\int f^2g^{-2}
=f^0g^{-1}-f^1g^{-2}+f^2g^{-3}-f^3g^{-4}+f^4g^{-5}-\cdots±\int
- \int f^0e^xdx=(f^0-f^1+f^2-f^3+f^4-\cdots)e^x
- \int f^0e^{-x}dx=-(f^0+f^1+f^2+f^3+f^4+\cdots)e^{-x}
- \int f^0e^{nx}dx=\bigl(\frac{f^0}{n}-\frac{f^1}{n^2}
+\frac{f^2}{n^3}-\frac{f^3}{n^4}+\cdots\bigr)e^x
- Cf: f(x)g(x)=f(x)\cos x
=f^0g^{-1}-f^1g^{-2}+f^2g^{-3}-f^3g^{-4}+f^4g^{-5}
=f^0\sin x-f^1(-\cos x)+f^2(-\sin x)-f^3(\cos x)+f^4(\sin x)-\cdots
or, =f^0g^{-1}+f^1g^1+f^2g^2+f^3g^3+f^4g^4+f^5g^5+\cdots
=f^0g\sin x+f^1\cos x+f^2(-\sin x)+f^3(-\cos x)+f^4(\sin x)+\cdots
- Cf: f(x)g(x)=f(x)\sin x
=f^0g^{-1}-f^1g^{-2}+f^2g^{-3}-f^3g^{-4}+f^4g^{-5}
=f^0(-cos x)-f^1(-\sin x)+f^2(\cos x)-f^3(\sin x)+f^4(-\cos x)-\cdots
or, =f^0g^{-1}+f^1g^1+f^2g^2+f^3g^3+f^4g^4+f^5g^5+\cdots
=f^0(-\cos x)+f^1(\sin x)+f^2(\cos x)+f^3(-\sin x)+f^4(-\cos x)+\cdots
- [Samples]
- ¶\int_{0}^{1}\ln (x^2+1)dx=\int_{0}^{1}(x)'\ln (x^2+1)dx
=\bigl[x\ln (x^2+1)\bigr]_0^1
-\int_{0}^{1}x・\frac{2x}{x^2+1}dx
here: \int_0^1 \frac{1}{x^2+1}dx=
let: x=\tan\theta\;→dx=\frac{1}{\cos^2\theta}d\theta
=\int_{0}^{\frac{\pi}{4}}\frac{1}{\tan^2\theta+1}\frac{1}{\cos^2}d\theta
=\int_{0}^{\frac{\pi}{4}}d\theta=\frac{\pi}{4}
- ¶\int (3x-4)^2(x-2)^5xdx
=(3x-4)^2\frac{1}{6}(x-2)^6-\{(3x-4)\frac{1}{7}(x-2)^7
-\frac{3}{7}\frac{1}{8}(x-2)^8
\}
- ¶\int xe^{2x}dx=x\frac{1}{2}e^{2x}-\frac{1}{2}\int e^{2x}dx
- ¶\int \frac{x}{e^x}dx=x(-e^{-x})-\int (-e^{-x})dx
- ¶\int x・2^xdx=x\frac{2^x}{\ln 2}-\int \frac{2^x}{\ln 2}
- ¶\int x\sin xdx=x(-\cos x)-\int (-\cos x)dx
- ¶\int x^2\cos xdx=x^2\sin x-2x(-\cos x)+2(-\sin x)+C
- ¶\int x^2\sin\frac{x}{2}dx=x^2(-2\cos\frac{x}{2})
-\int 2x(-2\cos\frac{x}{2})dx
=x^2(-2\cos\frac{x}{2})+4\{x(2\sin\frac{x}{2})-\int 2\sin\frac{x}{2}\}
- ¶\int \frac{x}{\cos^2x}dx=x\tan x-\int \tan xdx=x\tan x
-\int \frac{-(\cos x)'}{\cos x}dx=x\tan x+\ln|\cos x|
- ¶e^{-x}\sin 2xdx=I=-e^{-x}\sin 2x-\int -e^{-x}2\cos 2xdx
=-e^{-x}\sin 2x+2\{-e^{-x}\cos 2x-\int -e^{-x}(-2\sin 2x)dx\}
=-e^{-x}\sin 2x-2\{e^{-x}\cos 2x-4\int e^{-x}\sin 2xdx\; [homotype]
→5I=-e^{-x}(\sin 2x+2\cos 2x)
- ¶\int x^4\sin xdx
=x^4(-\cos x)-4x^3(-\sin x)+12x^2(\cos x)-24x(\sin x)+24(-\cos x)+C
- ¶\int x^4e^xdx=(x^4-4x^3+12x^2-24x+24)e^x
- ¶x^32^xdx=x^3\frac{2^x}{\ln 2}-3x^2\frac{2^x}{(\ln 2)^2}
+6x\frac{2^x}{(\ln 2)^3}-6\frac{2^x}{(\ln 2)^4}+C
- ¶\int (x^3-2x^2)\cos 2xdx
=(x^3-2x^2)(\frac{1}{2}\sin 2x)-(3x^2-4)(-\frac{1}{4}\cos 2x)
+(6x-4)(-\frac{1}{8}\sin 2x)-(6)(\frac{1}{16}\cos 2x)+C
- ¶\int (\ln x)^4dx
let: \ln x=t\;→x=e^t\;→dx=e^tdt
=\int t^4e^tdt=(t^4-4t^3+12t^2-24t+24)e^t+C
- ¶\int \frac{(\ln x)^3}{x^2}dx
let: \ln x=t\;→x=e^t\;→dx=e^tdt
=\int \frac{t^3}{(e^t)^2}e^tdt=\int t^3e^{-t}dt
=-(t^3+3t^2+6t+6)e^{-t}+C
9. 部分積分法 (♥):
- >Top Integration by parts: (integral-first!)

- \int f^{(0)}g^{(0)}
=f^{(0)}g^{(-1)}-f^{(1)}g^{(-2)}
+f^{(2)}g^{(-3)}-f^{(3)}g^{(-4)}
+f^{(4)}g^{(-5)}-f^{(5)}g^{(-6)} ...
- Pattern:
- x^m・(ax+b)^n
- x^m・a^{nx}
- x^me^{nx}
- x^m・\sin nx
- x^m・\cos nx
- x^m(\ln x)^n
- e^{mx}\sin nx
- e^{mx}\cos nx
- Tips:
- lower order of: e^{nx},\;a^{nx}
- (\frac{e^{2x}}{2})'=e^{2x}
- (a^x)'=a^x\ln a
- \int \tan x=\int \frac{\sin x}{\cos x}
=-\int \frac{(\cos x)'}{\cos x}
=-\ln(\cos x)+C
- \int \cot x=\int \frac{\cos x}{\sin x}
=\int \frac{(\sin x)'}{\sin x}
=\ln(\sin x)+C
>Top 10. Integral of product of exponential:
- [Type of \int (x-a)^m(x-b)^ndx]
- ¶\int_a^b(x-a)(x-b)dx=\bigl[\frac{1}{2}(x-a)^2(x-b)\bigr]_a^b
-\int_{a}^{b}\frac{1}{2}(x-a)^2dx
=-\frac{1}{2}\bigl[\frac{1}{3}(x-a)^3\bigr]_a^b=-\frac{1}{6}(b-a)^3
- \int_a^b(x-a)^2(x-b)dx=\bigl[\frac{1}{3}(x-a)^3(x-b)\bigr]_a^b
-\int_a^b\frac{1}{3}(x-a)^3dx
=-\frac{1}{3}\bigl[\frac{1}{4}(x-a)^4\bigr]_a^b=-\frac{1}{12}(b-a)^4
- \int_a^b(x-a)^2(x-b)^2dx=\bigl[\frac{1}{3}(x-a)^3(x-b)
-\frac{1}{3・4}(x-a)^42(x-b)
+\frac{1}{3・4・5}(x-a)^5・2\bigr]_a^b=-\frac{1}{30}(b-a)^5
- \int_{2}^{3}(2x-6)\sqrt{x-2}=\bigl[(2x-6)\{\frac{2}{3}(x-2)^{\frac{3}{2}}\}
\bigr]_2^3-\int_{3}^{2}2\frac{2}{3}(x-2)^{\frac{3}{2}}dx
10. 指数関数の積 (e):
- attribute to: \int (x-a)^ndx
=\frac{1}{n+1}(x-a)^{n+1}+C
- \int_{a}^{b}(x-a)(x-b)dx
=-\frac{1}{6}(b-a)^3
- \int_{a}^{b}(x-a)^2(x-b)dx
=-\frac{1}{12}(b-a)^4
- \int_{a}^{b}(x-a)^2(x-b)^2dx
=\frac{1}{30}(b-a)^5
>Top 11. Definite integral with absolute value:
- Split integration interval:
- ¶\int_{\frac{1}{e}}^{e}|\ln x|dx=\int_{\frac{1}{e}}^{1}(-\ln x)dx
+\int_{1}^{e}\ln xdx
=\bigl[-x\ln x+x\bigr]_{\frac{1}{e}}^1+\bigl[x\ln x-x\bigr]_1^e
- ¶\int_{\pi}^{0}|\sqrt{3}\sin x+\cos x|dx
=\int_{\frac{5}{6}\pi}^{0}2\sin(x+\frac{\pi}{6})dx
+\int_{\pi}^{\frac{5}{6}\pi}\{-2\sin (x+\frac{\pi}{6})dx\}
11. 絶対値付の定積分 (||):
- recurrence formula: 漸化式
- \ln x=x\ln x-x+C
- a\sin\theta+b\cos\theta
=A\sin (\theta+\alpha)
- \sin\theta+\sqrt{3}\cos\theta
=2\sin (\theta+\frac{\pi}{3})
>Top 12. Integral of Fractional function (▼):
- Make less order of numerator than denomirator:
- ¶\int \frac{2x+3}{4x-1}=\int \frac{\frac{1}{2}(4x-1)+\frac{7}{2}}{4x-1}
=\int \frac{1}{2}+\frac{7}{2(4x-1)}dx=\frac{1}{2}x+\frac{7}{8}\ln|4x-1|+C
- ¶\int \frac{x-3}{(x-1)(x-2)}=\int (\frac{2}{x-1}-\frac{1}{x-2})dx
- ¶\int \frac{1}{x(x+1)(x+2)}dx
here: \frac{1}{x(x+1)(x+2)}=\frac{1}{2}\{\frac{1}{x(x+1)}-\frac{1}{(x+1)(x+2)}\}=\frac{1}{2}\{(\frac{1}{x}-\frac{1}{x+1})-(\frac{1}{x+1}-\frac{1}{x+2})\}}
\int* =\frac{1}{2}\ln|x|-\ln|x+1|+\frac{1}{2}\ln|x+2|+C
=\frac{1}{2}\ln\frac{|x(x+2)|}{(x+1)^2}+C
12. 分数関数の積分 (♣):
- \frac{1}{ab}=\frac{1}{b-a}
(\frac{1}{a}-\frac{1}{b})
- \frac{1}{abc}=\frac{1}{c-a}
(\frac{1}{ab}-\frac{1}{bc})
>Top 13. Integral using symmetry:
- Symmetri integral:\cases{a&b\\c&d}
- \cases{\int_{-a}^{a}f(x)dx=0\;\text{[odd function]}\\
\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\;\text{[even function]}}w
- Symmetric function:
- ¶I=\int_{\frac{\pi}{2}}^{0}\frac{\sin x}{\sin x+\cos x}dx
→\int_{\frac{\pi}{2}}^{0}\frac{\cos x}{\sin x+\cos x}dx
add: →\frac{1}{2}\int_{\frac{\pi}{2}}^{0}dx=\frac{\pi}{4}
- ¶I=\int_{-1}^{1}\frac{1}{2}dx\;→\int_{-1}^{1}\frac{e^x}{e^x+e^{-x}}dx
symmery: →I=\int_{-1}^{1}\frac{e^{-x}}{e^x+e^{-x}}dx
add: \frac{1}{2}\int_{1}^{-1}dx=1
- Odd/even function:
- ¶\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos x(\sin x-x+1)dx
=\int_{*}^{*}(\cos x\sin x-x\cos x+\cos x)dx=2\bigl[\sin x\bigr]_0^{2\pi}
- ¶\int_1^{-1}(e^x+e^{-x})dx=2\bigl[e^x-e^{-x}\bigr]_0^1
13. 対称性による積分 (◐):
- f-x)=-f(x),\; [odd function]
- Eg: x\cos x,\;\cos x\sin x
- f(-x)=f(x),\; [even function]
>Top 14. King Property (♠):
- I=\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx
- →2I=\int_{a}^{b}\{f(x)+f(a+b-x)\}dx
- ¶I=\int_{2}^{3}\frac{x^2}{x^2+(5-x)^2}dx
→2I=\int_{2}^{3}\{\frac{x^2}{x^2+(5-x)^2}+\frac{(5-x)^2}{x^2}\}dx
=\int_{2}^{3}dx=1→I=\frac{1}{2}
- ¶I=\int_{0}^{\pi}\frac{x\sin x}{1+\cos^2x}dx
→2I=\int_{0}^{\pi}\{\frac{x\sin x}{1+\cos^2x}
+\frac{(\pi-x)\sin x}{1+\cos^2x}\}dx=\pi\int_{0}^{\pi}\frac{\sin x}{1+\cos^2x}dx
here let: \cos x=t\;→-\sin xdx=dt\;→(x:0→\pi);\;(t:1→-1)
=\pi\int_{-1}^1\frac{1}{1+t^2}dt
let: t=\tan\theta→dt=\frac{1}{\cos^2\theta}d\theta,
\;(t:-1→1);\;(\theta:-\frac{\pi}{4}→\frac{\pi}{4})
=\pi\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}d\theta
=\frac{\pi^2}{2}→I=\frac{\pi^2}{4}
- ¶I=\int_2^4\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}
=\int_2^4\frac{\sqrt{\ln(x+3)}}{\sqrt{\ln(x+3)}+\sqrt{\ln(9-x)}}
[x\;→2+4-x]\; King property
2I=\int_2^4 1dx=2\;→I=1
14. キング・プロパティ (♠):
- transfer: (x,y)→(X,Y)
- y=Y
- \frac{x+X}{2}=\frac{a+b}{2}
→X=a+b-x
>Top 15. Recurrsive function (♺):
- Appear the original integral:
- ¶I=\int e^{ax}\sin bxdx
=e^{ax}\frac{1}{b}(-\cos bx)+e^{ax}\frac{a}{b^2}\sin bx-\frac{a^2}{b^2}
\int e^{ax}\sin bxdx
→\frac{a^2+b^2}{b^2}I=e^{ax}(-\frac{1}{b}\cos bx+\frac{a}{b^2}\sin bx)
I=\frac{1}{a^2+b^2}e^{ax}(a\sin bx-b\cos bx)+C
- ¶I=\int e^{ax}\cos bxdx
=e^{ax}\frac{1}{b}\sin bx+e^{ax}\frac{a}{b^2}\cos bx-\frac{a^2}{b^2}
\int e^{ax}\cos bxdx
→\frac{a^2+b^2}{b^2}I=e^{ax}(\frac{1}{b}\sin bx+\frac{a}{b^2}\cos bx)
I=\frac{1}{a^2+b^2}e^{ax}(b\sin bx+a\cos bx)+C
- ¶\int xe^x\sin xdx
here: \int e^x\sin xdx=\frac{1}{2}e^x(\sin x-\cos x)+C,\;
\int e^x\cos xdx=\frac{1}{2}e^x(\sin x+\cos x)+C
=x\frac{1}{2}e^x(\sin x-\cos x)-\frac{1}{2}\int e^x(\sin x-\cos x)dx
=\frac{1}{2}xe^x(\sin x-\cos x)-\frac{1}{2}\int e^x\sin xdx
+\frac{1}{2}\int e^x\cos xdx
=\frac{1}{2}xe^x(\sin x-\cos x)-\frac{1}{4}e^x(\sin x-\cos x)
+\frac{1}{4}e^x(\sin x+\cos x)
=\frac{1}{2}e^x(\sin x-\cos x)+\frac{1}{2}e^x\cos x+C
-
15. 再帰関数(♺)::
>Top 16. Recurrence relation (n-1):
- Difference sequence:
- a_{n+1}=pa_n+q...(*)
- \alpha=p\alpha+q...(**) [characteristic eq]\;→(*)-(**)
- ¶a_{n+1}=4a_n-3,\; a_1=2
→a_{n+1}-1=4(a_n-1)\;→a_n-1=(a_1-1)4^{n-1}=4^{n-1}
→a_n=4^{n-1}+1
- a_{n+1}=pa_n+qr^n [divided by r^{n+1}]
- ¶a_{n+1}=3a_n+4・5^n,\;a_1=2
\frac{a_{n+1}}{5^{n+1}}=\frac{3}{5}\frac{a_n}{5^n}+\frac{4}{5}
→(\frac{a_{n+1}}{5^{n+1}-2})=\frac{3}{5}(\frac{a_n}{5^n}-2) [by char.eq]
→\frac{a_n}{5^n}-2=(a_1)(5)^{n-1}
→\frac{a_n}{5^n}=ー\frac{8}{5}(\frac{3}{5})^{n-1}+2
=a_n=-8・3^{n-1}+2
- a_{n+1}=pa_n+f^{(n)}
- ¶a_{n+1}=2a_n+n^2-2n+3,\;a_1=3...(*)
- target: a_{n+1}+\alpha(n+1)^2+\beta(n+1)+\gamma
=2(a_n+\alpha n^2+\beta n+\gamma)
⇔a_{n+1}=2a_n+\alpha n^2+(-2\alpha+\beta)n+\gamma...(**)
- compare (*) & (**): \alpha=1,\;-2\alpha+\beta=-2,\;\gamma=3
\alpha=1,\;\beta=0,\;\gamma=3
→a_{n+1}+(n+1)^2+3=2(a_n+n^2+3)
a_n=n^2+3=(a_1+1+3)2^{n-1}→a_n=2^{n-1}-n^2-3
- a_{n+1}=f(n)a_n
- ¶a_{n+1}=\frac{n+1}{n}a_n,\;a_1=3,\;(n≥2)
a_n=\frac{n}{n-1}a_{n-1}=\frac{n}{n-1}\frac{n-1}{n-2}a_{n-2}
=\frac{n}{n-1}\frac{n-1}{n-2}\frac{n-2}{n-3}\cdots\frac{2}{1}a_1=na_1=3n
(n=1) is also available.\;\therefore a_n=3n
- a_{n+1}=p(a_n)^q
- ¶a_{n+1}=3\sqrt{a_n},\;a_1=27
- logarithumic tranform (sequence>0):
→\log_3a_{n+1}=\log_3 3a_n^{\frac{1}{2}}=1+\frac{1}{2}\log_3a_n
→\log_3a_{n+1}=\frac{1}{2}\log_3a_n+1
→\log_3a_{n+1}=\frac{1}{2}(\log_3a_n-2)
→\log_3a_n-2=(\log_3a_1-2)(\frac{1}{2})^{n-1}
→\log_3a_n=(\frac{1}{2})^{n-1}+2\therefore\;a_n=3^{(\frac{1}{2})^{n-1}+2}
- Recurrence including S_n:
- a_1=S_1,\;a_{n+1}=S_{n+1}-S_n
- ¶S_n=4a_n-6,\; when n=1→a_1=4a_1-6→a_1=2
→a_{n+1}=S_{n+1}-S_n=4a_{n+1}-6(n+1)-4a_n+6n=4a_{n+1}-4a_n-6
→a_{n+1}=\frac{4}{3}a_n+2
a_{n+1}+6=\frac{4}{3}(a_n+6)\; [\alpha=\frac{4}{3}\alpha+2]
→a_n+6=(a_1+6)(\frac{4}{3})^{n-1}=8(\frac{4}{3})^{n-1}
\therefore\;a_n=8(\frac{4}{3})^{n-1}-6
- a_{n+2}+pa_{n+1}+qa_n=0
- →\alpha^2+p\alpha+q=0
→\cases{a_{n+2}-\alpha_1a_{n+1}=\alpha_2(a_{n+1}-\alpha_1a_n)
\\a_{n+2}-\alpha_2a_{n+1}=\alpha_1(a_{n+1}-\alpha_2a_n)}
⇔a_{n+2}-(\alpha_1+\alpha_2)a_{n+1}+\alpha_1\alpha_2 a_n
- ¶a_{n+2}-5a_{n;1}+6a_n=0,\;a_1=4,\;a_2=1
- \alpha^2-5\alpha+6=0→(\alpha-2)(\alpha-3)=0→\alpha=2,\;3
\cases{a_{n+2}-2a_{n+1}=3(a_{n+1}-2a_n)...(*)
\\a_{n+2}-3a_{n+1}=2(a_{n+1}-3a_n)...(**)}
- from (*):a_{n+1}-2a_n=(a_2-2a_1)3^{n-1}=-7・3^{n-1}
- from (**):a_{n+1}-3a_n=(a_2-3a_1)2^{n-1}=-11・2^{n-1}
- a_n=-7・3^{n-1}+11・2^{n-1}
- ¶a_{n+2}-6a_{n+1}+9a_n=0→a_1=1,\;a_2=5
→a_{n+2}-3a_{n+1}=3(a_{n+1}-3a_n),\;[\alpha=3]
a_{n+1}-3a_n=(a_2-3a_1)3^{n-1}=2・3^{n-1}
→a_{n+1}=3a_n+\frac{2}{3}3^n
→\frac{a_{n+1}}{3^{n+1}}=\frac{a_n}{3^n}+\frac{2}{9}
\frac{a_n}{3^n}=\frac{a_1}{3}+(n-1)\frac{2}{9}
\therefore\;a_n=3^{n-2}(2n+1)
- I_n=\int \sin^nxdx,\;(n=0,1,2,\cdots)
- I_n=-\frac{1}{n}\sin^{n-1}x\cos x+\frac{n-1}{n}I_{n-2},\;(n=2,3,4,\cdots)
- Proof: I_n=\int \sin^{n-1}\sin xdx
let: f=\sin^{n-1}x\;→f'=(n-1)\sin^{n-2}x\cos x,\;g=-\cos x\;→g'=\sin x
I_n=\sin^{n-1}x(-\cos x)-\int (n-1)\sin^{n-2}x\cos x(-\cos x)dx
=\sin^{n-1}x(-\cos x)+(n-1)\int \sin^{n-2}x(1-\sin^2x)dx
→I_n=-\sin^{n-1}x\cos x+(n-1)I_{n-2}-(n-1)I_n
→nI_n=-\sin^{n-1}x\cos x+(n-1)I_{n-2}
\therefore\;I_n=-\frac{1}{n}\sin^{n-1}x\cos x+\frac{n-1}{n}I_{n-2}
- I_n=\int \cos^nxdx,\;(n=0,1,2,\cdots)
- I_n=\frac{1}{n}\cos^{n-1}x\sin x+\frac{n-1}{n}I_{n-2},\;(n=2,3,4,\cdots)
- Proof: I_n=\int \cos^{n-1}\cos xdx
let: f=\cos^{n-1}x\;→f'=(n-1)\cos^{n-2}x(-\sin x),\;g=\sin x\;→g'=\cos x
I_n=\cos^{n-1}x\sin x-\int (n-1)\cos^{n-2}x(-\sin x)\sin xdx
=\cos^{n-1}x\sin x+(n-1)\int \cos^{n-2}x(1-\cos^2x)dx
→I_n=\cos^{n-1}x\sin x+(n-1)I_{n-2}-(n-1)I_n
→nI_n=\cos^{n-1}x\sin x+(n-1)I_{n-2}
\therefore\;I_n=\frac{1}{n}\cos^{n-1}x\sin x+\frac{n-1}{n}I_{n-2}
- I_n=\tan^ndx,\;(n=0,1,2,\cdots)
- I_n=\frac{1}{n-1}\tan^{n-1}x-I_{n-2},\;(n=2,3,4,\cdots)
- Proof: In=\int \tan^{n-2}\tan^2xdx=\int \tan^{n-2}(\frac{1}{\cos^2x}-1)dx
=\int \bigl(\frac{\tan^{n-2}x}{\cos^2x}-\tan^{n-2}\bigr)dx
=\int
\frac{\tan^{n-2}x}{\cos^2x}dx-I_{n-2}
let: t=\tan x\;→dt=\frac{1}{\cos^2x}dx
here: \int \frac{\tan^{n-2}x}{\cos^2x}dx=\int t^{n-2}dt=\frac{t^{n-1}}{n-1}+C
=\frac{\tan^{n-1}x}{n-1}+C
\therefore\;I_n=\frac{1}{n-1}\tan^{n-1}x-I_{n-2}
- I_n=\int (\ln x)^ndx,\;(n=0,1,2,\cdots)
- I_n=x(\ln x)^n-nI_{n-1},\;(n=1,2,3,\cdots)
- Proof: let: f=(\ln x)^n\;→f'=n(\ln x)^{n-1}\frac{1}{x};\;g=x\;→g'=1
\int (\ln x)^ndx=(\ln x)^nx-\int n()^{n-1}\frac{1}{x}xdx
=x(\ln x)^n-n\int (\ln x)^{n-1}dx
\therefore\;I_n=x(\ln x)^n-nI_{n-1}
- I_n=\int x^ne^xdx,\;(n=1,2,3,\cdots)
- I_n=x^ne^x-nI_{n-1}
- Proof: I_n=x^ne^x-\int nx^{n-1}e^xdx=x-ne^x-nI_{n-1}
- I_n=\int \frac{x^n}{e^x}dx,\;(n=1,2,3,\cdots)
- I_n=-\frac{x^n}{e^x}-nI_{n-1}
- Proof: I_n=\int x^ne^{-1}=x^n(-e^{-x})-\int nx^{n-1}(-e^{-x})
=-x^ne^{-x}+nI_{n-1}
- I_n=\int \frac{e^x}{x^n}dx,\;(n=1,2,3,\cdots)
- I_n=-\frac{e^x}{(n-1)x^{n-1}}+\frac{1}{n-1}I_{n-1}
- Proof: I_n=\int e^xx^{-n}
=e^x\frac{1}{-n+1}x^{-n+1}-\int e^x\frac{1}{-n+1}x^{-n+1}dx
=\frac{-e^x}{(n-1)x^{n-1}}+\frac{1}{n-1}I_{n-1}
- I_n=\int x^m(\ln x)^ndx,\;(n=1,2,3,\cdots)
- I_n=\frac{x^{m+1}(\ln x)^n}{m+1}-\frac{n}{m+1}I_{n-1}
- Proof: \int (\ln x)^nx^mdx
=(\ln x)^n\frac{1}{m+1}x^{m+1}
-\int n(\ln x)^{n-1}\frac{1}{x}\frac{1}{m+1}x^{m+1}
=\frac{x^{m+1}(\ln x)^n}{m+1}-\frac{n}{m+1}I_{n-1}
- I_n=\int x^n\sin xdx,\;(n=2,3,4,\cdots)
- I_n=-x^n\cos x+nx^{n-1}\sin x-n(n-1)I_{n-2}
- Proof; from: \int f^0g^0=f^0g^{-1}-f^1g^{-2}+\int f^2g^{-2}
let: f^0=x^n,\;g^0=\sin x
- I_n=x^n(-\cos x)-nx^{n-1}(-\sin x)+\int n(n-1)x^{n-2}(-\sin x)dx
=-x^n\cos x+nx^{n-1}\sin x-n(n-1)\int x^{n-2}\sin xdx
\therefore\; I_n=-x^n\cos x+nx^{n-1}\sin x-n(n-1)I_{n-2}
16. 漸化式 (n-1):
- arithmetic sequence: 等差型
- geometric sequence: 等比型
- difference sequence: 階差型
- a_{n+1}=a_n+d
- a_{n+1}=ra_n
- a_{n+1}=a_n+f(n)
- a_{n+1}=pa_n+q
- a_{n+1}=pa_n+q・r^n
- a_{n+1}=pa_n+f(n)
- a_{n+1}=f(n)a_n
- a_{n+1}=p(a_n)^q
- a_{n+1}=pa_n
- S_n included
- a_{n+2}+pa_{n+1}+qa_n=0
>Top 17. Parametric variable (✔):
- Parameter:
- ¶\int \frac{1}{\sqrt{1-x^2}}dx
from: x^2+y^2=1
let: x=\sin t\;→dx=\cos tdt
=\int \frac{1}{\cos t}\cos tdt=\int dt
- ¶\int \frac{1}{\sqrt{1+x^2}}dx
from:
let: x=\frac{1}{2}(e^t-e^{-t})\;(=\sinh t) [hyperbolic]
→dx=\frac{1}{2}(e^t+e^{-t})dt\;→e^t=x+\sqrt{x^2+1}→t=\ln (x+\sqrt{x^2+1})
=\int \frac{1}{\sqrt{1+\frac{(e^t+e^{-t})^2}{4}}}\frac{et+e^{-t}}{2}dt
=\int \frac{1}{\frac{e^t+e^{-t}}{2}}\frac{e^t+e^{-t}}{2}dt=\int dt
=\ln (x+\sqrt{x^2+1})+C
- Parameter:
- \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
- \frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx})
=\frac{d}{dt}(\frac{dy}{dx})\frac{dt}{dx}
- [Sample]
- ¶\cases{x=t-\sin t\\y=1-\cos t}
17. 媒介変数 (✔):
>Top 18. Beta function (Euler integral of the first kind (β)):
- \int_{b}^{a}(x-a)^m(x-b)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(b-a)^{m+n+1}
=\bigl[\frac{1}{m+1}(x-a)^{m+1}(x-b)^n\bigr]_a^b
-\int \frac{n}{m+1}(x-a)^{m+1}(x-b)^{n-1}dx
=\frac{(-1)^nm!n!}{(m+n-1)!}\int_{b}^{a}\frac{(x-a)^{m+n}}{m+n}dx
here coefficient: \frac{n}{m+1}\frac{n-1}{m+2}\cdots\frac{2}{m+n-1}
=\frac{m!n!}{(m+n-1)!}
- m=1, n=1:\;→\int_{b}^{a}(x-a)(x-b)dx=-\frac{1}{6}(b-a)^3
- m=2, n=1:\;→\int_{b}^{a}(x-a)^2(x-b)dx=-\frac{1}{12}(b-a)^4
- m=2, n=2:\;→\int_{b}^{a}(x-a)^2(x-b)^2dx=\frac{1}{30}(b-a)^5
18. ベータ関数 (β):

>Top 19. Gaussian integral:
- Gaussian integral:
-
I=\int_{-\infty}^{\infty}e^{-x^2}dx
- I^2=\bigl(\int_{-\infty}^{\infty}e^{-x^2}dx\bigr)
\bigl(\int_{-\infty}^{\infty}e^{-y^2}dy\bigr)
=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dxdy
- let: x=r\cos\theta,\;y=r\sin\theta
\;→I^2=\int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2)}rdrd\theta
=\int_{0}^{2\pi}d\theta\int_{0}^{\infty}re^{-r^2}dr
=2\pi\bigl[-\frac{1}{2}e^{-r^2}\bigr]_0^{\infty}=\pi
I=\sqrt{\pi},\;[I>0]
- ¶1: \int_{-\infty}^{\infty}e^{-ax^2}dx,\;(a>0)
- let: y=\sqrt{a}x,\;dy=\sqrt{a}dx
=\int_{-\infty}^{\infty}e^{-y^2}\frac{1}{\sqrt{a}}dy=\sqrt{\frac{\pi}{a}}
- ¶2: \int_0^{\infty}e^{-ax^2}dx,\;(a>0)
- =\frac{1}{2}\sqrt{\frac{\pi}{a}}\;[even function]
- ¶3: \int_{0}^{\infty}xe^{-ax^2}dx,\;(a>0)
=\bigl[-\frac{1}{2a}e^{-ax^2}\bigr]_0^{\infty}=\frac{1}{2a}\; [odd function]
- ¶4: G=\int_{-\infty}^{\infty}x^2e^{-ax^2}dx,\;(a>0)
I(a)=\int_{-\infty}^{\infty}e^{-ax^2}dx
→\frac{d(a)}{da}=\int_{-\infty}^{\infty}\frac{\partial }{\partial a}(e^{-ax^2})dx
=\int_{-\infty}^{\infty}x^2e^{-ax^2}dx
\therefore\;G=-\frac{dI(a)}{da}=\frac{d}{da}(\pi^{\frac{1}{2}}a^{-\frac{1}{2}})
=\frac{1}{2a}\sqrt{\frac{\pi}{a}}
- ¶5: \int_0^{\infty}x^3e^{-ax^2}dx,\;(a>0)
=\int_0^{\infty}x^2xe^{-ax^2}dx=\bigl[x^2(-\frac{1}{2}e^{-ax^2})\bigr]_0^{\infty}
-
\int_0^{\infty}2x(-\frac{1}{2}e^{-ax^2})dx
=\frac{1}{a}\int_0^{\infty}xe^{-ax^2}dx=\frac{1}{2a^2}\; [←¶3]
- ¶6: \int_{-\infty}^{\infty}x^4e^{-ax^2}dx,\;(a>0)
=\frac{d^2}{da^2}(\pi^{\frac{1}{2}}a^{-\frac{1}{2}})
=\frac{3}{4a^2}\sqrt{\frac{\pi}{a}}
- ¶7: [general form]
\cases{\int_{0}^{\infty}x^{2n+1}e^{-ax^2}dx=\frac{n!}{2a^{n+1}}
\\\int_{-\infty}^{\infty}x^{2n}e^{-ax^2}dx
=\frac{(2n-1)!!}{2^na^n}\sqrt{\frac{\pi}{a}}}
- ¶8: \int_{-\infty}^{\infty}e^{-ax^2+b+c}dx,\;(a>0)
=\int_{-\infty}^{\infty}e^{-a(x-\frac{b}{2a})^2+\frac{b^2}{4a}+c}dx
=e^{\frac{b^2}{4a}+c}\int_{-\infty}^{\infty}e^{-a(x-\frac{b}{2a})}\;
[parallel displacement]
=\sqrt{\frac{\pi}{a}}e^{\frac{b^2}{4a}+c}
19. ガウス積分 (G):
- \cases{x=r\cos\theta
\\y=\sin\theta}
- Jacobian:
\pmatrix{\frac{\partial x}{\partial r}
&\frac{\partial x}{\partial\theta}
\\\frac{\partial y}{\partial r}
&\frac{\partial y}{\partial\theta}} =\pmatrix{\cos\theta&-r\sin\theta
\\\sin\theta&r\cos\theta}
>Top 20. l'Hôpital's rule (Ô):
- Average-Value theorem:
- If f(x) is continuous over the interval [a,b] then:
^\exists c\in(a,b)\;\text{such that}\; f(c)
=\frac{1}{b-a}\int_{a}^{b}f(x)dx\;[average, or mean value: there exists a point c such that f(c) equals to the averge of f(x)]
- l'Hôpital's rule (or Bernoulli's rule):
- Let L be an open interval containing c (for two-sided limit or one-sided limit if c is infinite).
- the real valued function f,\;g are asumed continuous and differentiable on an open interval I except at c, and additionally g'(x)≠0 on I except at c.
- if it is assumed that \;lim_{x\to c}\frac{f'(x)}{g'(x)}=L;
this rule is applied to the ratio of L if it has a finite or infinite limit, but not to the ratio fluctuating permanently.
- If either \displaystyle\lim_{x\to c}f(x)=\lim_{x\to c}g(x)=0\; [\frac{0}{0}]
, or \;\;\;\displaystyle\lim_{x\to c}|f(x)|=\lim_{x\to c}|g(x)|=\infty,
then \;\displaystyle\lim_{x\to c}\frac{f(x)}{g(x)}=L\; [\frac{\infty}{\infty}]
- Sample:
- ¶\frac{x+\sin x}{x}, where c=±\infty, then,
- \frac{f'(x)}{g'(x)}=\frac{1+\cos x}{1}\;[\cos x oscillates]
- But the origianl function can be:
\lim_{x\to\infty}\frac{f(x)}{g(x)}
=\lim_{x\to\infty}\bigl(1+\frac{\sin x}{x}\bigr)=1
- ¶\lim_{x\to 0}\frac{e^x-1}{x^2+x}
=\lim_{x\to 0}\frac{\frac{d}{dx}(e^x-1)}{\frac{d}{dx}(x^2+x)}
=\lim_{x\to 0}\frac{e^x}{2x+1}=1
- ¶\lim_{x\to\infty}\frac{x^n}{e^x}
=\lim_{x\to\infty}\frac{nx^{n-1}}{e^x}
=n\lim_{x\to\infty}\frac{x^{n-1}}{e^x}\cdots
when l'Hôpital's rule repeats, the exponent will be zero: thus the limit will be zero.
- ¶\lim_{x\to 0}\frac{e^x-e^{-1}}{x}=\lim_{x\to 0}\frac{e^x+e^{-1}}{1}=2
- ¶\lim_{x\to\infty}\frac{x^2}{e^{2x}}=\lim_{x\to\infty}\frac{2x}{2e^{2x}}
=\lim_{x\to\infty}\frac{2}{4e^{2x}}=0
- ¶\lim_{x\to +0}x^2\ln x=\lim_{x\to +0}\frac{\ln x}{\frac{1}{x^2}}
=\lim_{x\to +0}\frac{\frac{1}{x}}{-\frac{2}{x^3}}
=\lim_{x\to +0}(-\frac{1}{2}x^2)=0
20. ロピタルの定理 (Ô):
- set difference: 差集合 \
- extented real number: 拡大実数
- one-sidede limit: 片側極限
- c, L を拡大実数であり、
以下条件が満たされるとする。
\displaystyle\lim_{x\to c}f(x)
=\lim_{x\to c}g(x)=0
\displaystyle\lim_{x\to c}f(x)
=\pm\lim_{x\to c}g(x)=\pm\infty
- ある開区間からcを除いた点で
g'(x)≠0
- ここで\displaystyle\lim_{x\to c}
\frac{f'(x)}{g'(x)}=L
が存在すれば
- \displaystyle\lim_{x\to c}
\frac{f(x)}{g(x)}=Lである。
なお、片側極限でもよい。
- \displaystyle\lim_{x\to\infty}
\frac{a^x}{x^r}=\infty
- \displaystyle\lim_{x\to\infty}
\frac{x^r}{\ln x}=\infty
>Top 21. Last boss integral:
- 100th question of the interal by Yobinori:
- ¶ I=\int_{0}^{\frac{\pi}{4}}\sqrt{\tan x}dx
- let t=\sqrt{\tan x}→ t^2=\tan x→2tdt=\frac{1}{\cos^2x}dx
→dx=2t\cos^2xdt=\frac{2t}{1+\tan^2x}dt=\frac{2t}{1+t^4}dt
- integral range: x:0→\frac{\pi}{4};\; t:0→1
- I=\int_{0}^{1}\frac{2t^2}{1+t^4}dt
- where, t^4+1=(t^2+1)^2-2t=(t^2+\sqrt{2}+1)(t^2-\sqrt{2}+1)=P
- where, \frac{2t^2}{P}=\frac{At+B}{t^2+\sqrt{2}t+1}
+\frac{Ct+D}{(t^2-\sqrt{2}t+1)}
→A=-\frac{1}{\sqrt{2}}; B=0; C=\frac{1}{\sqrt{2}}; D=0
- thus, I=\frac{1}{\sqrt{2}}\{\int_{0}^{1}\frac{t}{t^2-\sqrt{2}t+1}dt
-\int_{0}^{1}\frac{t}{t^2+\sqrt{2}t+1}dt\}
=\frac{1}{\sqrt{2}}\{I_1-I_2\}
- where, I_1=\frac{1}{2}\{\int_{0}^{1}\frac{(t^2-\sqrt{2}t+1)'
+\sqrt{2}}{t^2-\sqrt{2}t+1}dt\}
=\frac{1}{2}\{\int_{0}^{1}\frac{(t^2-\sqrt{2}t+1)'}{t^2-\sqrt{2}t+1}dt
+\int_{0}^{1}\frac{\sqrt{2}}{t^2-\sqrt{2}t+1}dt\}
- where, \frac{\sqrt{2}}{t^2-\sqrt{2}t+1}
=\frac{\sqrt{2}}{(t-\frac{1}{\sqrt{2}})^2+\frac{1}{2}}
- let, t-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}\tan\theta\;→dt
=\frac{1}{\sqrt{2}}\frac{1}{\cos^2\theta}d\theta
t: 0→1;\;\theta: -\frac{\pi}{4}→\alpha such that \;\tan\alpha
=\sqrt{2}-1\;(0<\alpha<\frac{\pi}{2})
- I_1=\frac{1}{2}\bigl\{\bigl[\ln |t^2-\sqrt{2}t+1|\bigr]_0^1
+2\int_{-\frac{\pi}{4}}^{\alpha}\frac{\sqrt{2}}{\tan^2\theta+1}
\frac{1}{\sqrt{2}\cos^2\theta}d\theta\bigr\}\\
=\frac{1}{2}\bigl\{\ln (2-\sqrt{2})+2\int_{-\frac{\pi}{4}}^
{\alpha}d\theta\bigr\}
=\frac{1}{2}\ln(2-\sqrt{2})+\alpha+\frac{\pi}{4}
- where, I_2=\frac{1}{2}\{\int_{0}^{1}\frac{(t^2+\sqrt{2}t+1)'
-\sqrt{2}}{t^2+\sqrt{2}t+1}dt\}
=\frac{1}{2}\{\int_{0}^{1}\frac{(t^2+\sqrt{2}t+1)'}{t^2+\sqrt{2}t+1}dt
-\int_{0}^{1}\frac{\sqrt{2}}{t^2+\sqrt{2}t+1}dt\}
- I_2= \frac{1}{2}\bigl\{\bigl[\ln |t^2+\sqrt{2}t
+1|\bigr]_0^1-2\int_{\frac{\pi}{4}}^{\beta}\theta\bigl\}
=\frac{1}{2}\ln (2+\sqrt{2})-\beta+\frac{\pi}{4}
- where, \beta is such that \;\tan\beta=\sqrt{2}+1\;(0<\beta<\frac{\pi}{2})
- thus, I=\frac{1}{\sqrt{2}}(\frac{1}{2}\ln \frac{2-\sqrt{2}}
{2+\sqrt{2}}+\alpha+\beta)
- where, \tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}
{1-\tan\alpha\tan\beta}=\frac{2\sqrt{2}}{1-1}=\infty
- →\alpha+\beta=\frac{\pi}{2}
- then, I=\frac{1}{\sqrt{2}}\bigl(\frac{1}{2}\ln \frac{2-\sqrt{2}}{2+\sqrt{2}}
+\alpha+\beta\bigr)=\frac{1}{\sqrt{2}}
\{\ln (\sqrt{2}-1)+\frac{\pi}{2}\}
- where, \frac{2-\sqrt{2}}{2+\sqrt{2}}=\frac{6-2\sqrt{2}}{2};\;3-2\sqrt{2}=(\sqrt{2}-1)^2
21. ラスボス積分:
- Tips:
- ルートを外す:
\sqrt{\tan x}=tと置く。
定積分の範囲; dx→dt計算
- 4乗の因数分解:
(t^4+1)=(t^2+1)^2-2t
- 部分分数分解:
- \tan xへの置換:
\frac{1}{x^2+a^2}のパターンは
x=a\tan\thetaと置く
- 長い式は
I=I_1+I=2
I_1=I_{11}+I_{12}と分割計算
- 定積分の範囲変換:
確定値が出ない場合はsuch that方式:
\alpha such that \;\tan\alpha=
遠く。→後の期待
- 三角関数の公式:
\tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta}
{1-\tan\alpha\tan\beta}
- \frac{\pi}{2}で\tan\theta→\infty
- 微分接触型関数の積分:
\int f^af'dx=\frac{f^{a+1}}{a+1}+C
- 二重根号の外し方:
\sqrt{a+b\pm 2\sqrt{ab}}=\sqrt{a}\pm \sqrt{b}
>Top 22. xxxx:
22. xxxx:
Comment
- In some high schools, there seems a hobby club named 'integral solution club'; I would have participated such a club if it had existed such a club in my old high school.
- Solution of integrals resembles a kind of game, which is useful in activating one's aging brain during staying home.
- 一部の高校には'積分クラブ'があるらしい。もしかつての私の高校にそのようなクラブがあれば、きっと参加したのに。
- 積分の解法は一種のゲームに似ている。それは自宅で引きこもりの老頭の活性化に役立つ。
dxdt |
Memorandum of Calculus Math |
Cat: SCI |
compiled by Kanzo Kobayashi |
20710u |
Original resume |
Remarks |
|
>Top 0. Preface:
|
0. 序文:
|
>Top 1. Important formulas (★):
|
1. 主要公式 (★):
|
>Top 2. Integral using Basic formula (★):
|
2. 基本公式による積分 (★):
|
>Top 3. Hyperbolic function (H):
|
3. 双曲線関数 (H):
|
>Top 4. Integral using Exponential-Logarithm (e):
|
4. 指数関数・対数関数の積分 (e):
|
>Top 5. Integral using Trigonometry (▲):
|
5. 三角関数の積分 (▲):
|
>Top 6. Trigonometry to Rational function (▲):
|
6. 三角関数の有理関数化 (▲):
|
>Top 7. Integration by Substitution (♦):
|
7. 置換積分法 (♦):
|
>Top 8. Integration by Substitution with differential-attached (✦)
|
8. 置換積分法 (微分接触型) (✦):
|
>Top 9. Integration by Parts (♥):
|
9. 部分積分法 (♥):
|
>Top 10. Integral of product of exponential:
|
10. 指数関数の積 (e):
|
>Top 11. Definite integral with absolute value:
|
11. 絶対値付の定積分 (||):
|
>Top 12. Integral of Fractional function (▼):
|
12. 分数関数の積分 (♣):
|
>Top 13. Integral using symmetry:
|
13. 対称性による積分 (◐):
|
>Top 14. King Property (♠):
|
14. キング・プロパティ (♠):
|
>Top 15. Recurrsive function (♺):
|
15. 再帰関数(♺):: |
>Top 16. Recurrence relation (n-1):
|
16. 漸化式 (n-1):
|
>Top 17. Parametric variable (✔):
|
17. 媒介変数 (✔): |
>Top 18. Beta function (Euler integral of the first kind (β)):
|
18. ベータ関数 (β): |
>Top 19. Gaussian integral:
|
19. ガウス積分 (G):
|
>Top 20. l'Hôpital's rule (Ô):
|
20. ロピタルの定理 (Ô):
|
>Top 21. Last boss integral:
|
21. ラスボス積分:
|
>Top 22. xxxx: |
22. xxxx: |
Comment |
|
|