Loading [MathJax]/jax/element/mml/optable/MathOperators.js

| Bottom | Home | Article | Bookshelf | Keyword | Author | Oxymoron |

dxdt

Memorandum of Calculus Math

Cat: SCI
Pub: 2020
#2011

compiled by Kanzo Kobayashi

20710u
Title

Calculus Math

微分積分学

Index
  1. Preface:
  2. Important formulas:
  3. Integral using basic formula:
  4. Hyperbolic function:
  5. Integral using exponential-logarithum:
  6. Integral using trigonometry:
  7. Trigonometry to rational function:
  8. Integral by substitution:
  9. Integral by substitution with differential attached:
  10. Integral by parts:
  11. Integral of product of exponential:
  12. Definite integral with absolute value:
  13. Integral of fractional function:
  14. Integral using symmetry:
  15. King property:
  16. Recursive function:
  17. Recurrence relation:
  18. Parametric variable:
  19. Beta function:
  20. Gaussian integral:
  21. l'Hôpital's rule:
  22. Last boss integral:
  1. 序文:
  2. 主要公式(★):
  3. 基本公式による積分(★):
  4. 双曲線関数(H):
  5. 指数関数・対数関数の積分:
  6. 三角関数の積分(▲):
  7. 三角関数の有理関数化(▲):
  8. 置換積分法(♦):
  9. 置換積分法(微分接触型)():
  10. 部分積分法(♥):
  11. 指数関数の積():
  12. 絶対値付の定積分(||):
  13. 分数関数の積分()
  14. 対称性による積分():
  15. キングプロパティ(♠):
  16. 再帰関数(♺):
  17. 漸化式(n-1):
  18. 媒介変数() :
  19. ベータ関数 (β):
  20. ガウス積分 (G):
  21. ロピタルの定理 (Ô):
  22. ラスボス積分:
Why
  • Calculus looks like to trace one's family tree; just as family is a function, and derivatives are descendants, integrals ancestors.
  • Integration seems to be a detective story, whose key resides in details, requiring to have some imagination (and some formula) to solve the answer with pursuing relationship and features of terms of a function.
  • Notation is very important in mathematics, particularly in calculus; and Latex aslo seems to contribute to enhance such notation.
Original resume
Remarks

>Top 0. Preface:

  • Infinitesimal:
    • In 17C, when calculus was discovered by Isaac Newton (1642-1727) and Gottfried Leibniz (1646-1716), lots of criticism occurred. One of the prominent critic was Bishop George Berkeley(1685-1753), wrote, "infinitessimals are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"
    • For example such that: let dx be an infinitesimal. Then 2dx is also infinitesimal. Therefore 1dx=12dx. Dividing both sides by dx, which is not zero; we have a proof that 1=12
    • In 1960's, Abraham Robinson (1918-1974) had shown that it was possible to construct a self-consistent number system that included infinite and infinitesimal numbers; called hyperreal number system which includes the real numbers as a subset.
    • we have at least three levels to the hierarchy: 1) infinities comparable to H, 2) finite numbers, and 3) infinitesimal compared to 1H
    • Division by zero is undefined. However, we can divide a finite number by an infinitesimal, and get an infinite result.

  • Followings are tips for solving integrals:
    1. ★: Remember important integral formula to lower order of the function.
    2. H: Get wise hyperbolic function:
    3. : Use exponential-logarithum:
    4. ▲: Replace with proper trigonometry to make simpler rationalization.
    5. ♦:Find proper substitution to make simpler function.
    6. ✦: Focus on combination of derivative and its original function:
    7. ♥: Follow integration by parts, selecting proper side of terms to make easier integrals.
    8. ||: Be careful about absolute value
    9. ♣: Consider fractional function
    10. ◐: Be attentive to symmetric function:
    11. ♠: Imagine King property (special case)
    12. ♺: Notice recursive function
    13. n-1: Never forget recurrence relation
    14. : Pay attention to parametric function
    15. β: Picture beta function
    16. G: Recall Gaussian function

0. 序文:

  • pelmanism: 神経衰弱
  • Integral is like a card game Pelmanism:
    H℮▲♦✦♥||♣◐♠♺n-1✔βG, and more.

>Top 1. Important formulas (★):

  • Some Calculus formula:
    1. y=fglny=ln(fg)=lnf+lngyy=ff+ggy=fg+fg
    2. y=(fg)
      lny=lnfg=lnflngyy=ffggy=fgfgg2=fgfgg2
    3. (ex)=ex
    4. (ax)=axlna
      • y=axlny=xlnayy=lna
    5. y=(xx)
      lny=xlnx
      yy=lnx+1y=y(lnx+1)=xx(lnx+1)
    6. (lnx)=1x
    7. (lny)=yy
    8. (lnax)=(lnxlna)=1lna(lnx)=1xlna
    9. (sinx)=cosx
    10. (cosx)=sinx
    11. (tanx)=1cos2x=sec2x
      • (sinx(cosx)1)=cosx(cosx)1)+sinx(1)cos2x(sinx)=1+tan2x
    12. (1tanx)=(cotx)=1sin2x=csc2x
    13. (sin1x)=11x2
      • (x)=(siny)1=ycosycosy=1sin2y=1x2
    14. (cos1x)=11x2
      • cosy=±1sin2y=±1x2;(π2yπ2)
    15. (tan1x)=11+x2
    16. y=xny(n)=n!
    17. y=sinxy(n)=sin(x+n2π)
    18. y=cosxy(n)=cos(x+n2π)
    19. y=exy(n)=ex
    20. y=axy(n)=ax(lna)n
    21. y=lnxy(n)=(1)n1(n1)!xn
    22. y=xexy(n)=(x+n)ex
    23. (fg)(n)=nk=0nCkf(nk)g(k)
      =nC0f(n)g+nC1f(n1)g++nCn1fg(n1)+nCnfg(n)
      [Leipniz formula]
    24. 1a2x2dx=sin1xa+C
      • let: x=asint
    25. 1a2+x2dx=1atan1xa+C
      • let: x=atant
  • <*Tips>
    1. alogax=x
    2. f(sinx)cosxsinx=t
      →dt=\cos xdx
    3. f(cosx)sinxcosx=t
    4. f(tanx)1cos2xtanx=t1cos2xdx=dt
    5. f(sinx,cosx)...(*)
      tanx2=t
      sinx=2t1+t2
      cosx=1t21+t2
      dt=1+t22dxdx=21+t2dt
      ()dx=f(2t1+t2,1t21+t2)21+t2dt
    6. lnxdx1lnxdx
    7. π0xf(sinx)dx
      =π2π0f(sinx)dx
  • sin1x=arcsinx:
    • cos(arccosx)=x
  • arcsin

1. 主要公式 (★):

  • Basic: 基本
    sin(π2x)=cosx
    cos(π2x)=sinx
    sin(x+π2)=cosx
    cos(x+π2)=sinx
    sin(x+π)=sinx
    cos(x+π)=cosx

  • Addition formula: 加法定理
    sin(a±b)=sinacosb±cosasinb
    cos(a±b)=cosacosbsinasinb
    tan(a±b)=tana±tanb1tanatanb

  • Double angle formula: 倍角
    sin2x=2sinxcosx
    cos2x=cos2xsin2x=2cos2x1=12sin2x
    tan2x=2tanx12tan2x

  • Half angle formula: 半角
    sin2x=12(1cos2x)
    cos2x=12(1+cos2x)=11+tan2x
    tan2x=1cos2x1+cos2x

  • Tripple angle formula: 3倍角
    sin3x=3sinx4sin3x
    cos3x=4cos3x3cosx
    (x=0: 4-3)

  • (cosx+isinx)3=cos3x+3icos2xsinx
    3cosxsin2xisin3x
    =cos3x+isin3x

  • Product-Sum formula: 積和
    sinacosb=12(sin(a+b)+sin(ab))
    sinasinb=12(cos(a+b)+cos(ab))
    cosacosb=12(cos(a+b)+cos(ab))

  • Sum-Product formula: 和積
    sina+sinb=2sina+b2cosabs
    sinasinb=2cosa+b2sinabs
    cosa+cosb=2cosa+b2cosab2
    cosacosb=2sina+b2sinab2

  • Inverse trigonometric: 逆三角関数
    (sin1x)=11x2
    (cos1x)=11x2
    (tan1x)=11+x2

  • (ln(sinx))=(sinx)sinx=cosxsinx
    (ln|tanx|)=1tanx1cos2x
    =1sinxcosx

  • cos(sin1x)
    =1{sin(sin1x)}2
    =1x2
  • sin(sin1x)=cos(cos1x)
    =tan(tan1x)=x
    sin(cos1x)=cos(sin1x)=
    =1{cos(cos1x)}2
    =1x2
    cos(tan1x)=sin(cot1x)
    =11+x2
    cos1x=sin11x2
    tan1x=sin1xx2+1

 

>Top 2. Integral using Basic formula (★):

  • [Basic xa]:
    1. xadx=12xa+1+C,(a1)
    2. (ax+b)ndx=1a(ax+b)n+1n+1+C
    3. 11(ax+b)2dx=1aarcsin(ax+b)+C
    4. 11+(ax+b)2dx=1aarctan(ax+b)+C
    5. sin(ax+b)dx=1acos(ax+b)+C
    6. cos(ax+b)dx=1asin(ax+b)+C
    7. (1+tan2(ax+b))dx=1atan(ax+b)+C
    8. (1+cot2(ax+b))dx=1acot(ax+b)+C
    9. 1a2+x2dx=1aarctan(1ax)+C
    10. 1a2+b2x2dx=1abarctan(bax)+C
    11. 1a2x2dx=arcsin(1ax)+C
    12. 1a2b2x2dx=1barcsin(bax)+C
    13. 1x=ln|x|+C,(a=1)
      1. 1x2=1x+C,(a=2)
      2. x=23xx+C,(a=12)
      3. 1x=2x+C,(a=12)
    14. ff=ln|f|+C
    15. f0g0=f0g1f1g1
      1. f0g0=f0g1f1g2+f2g2

  • [Samples]
    1. 43x+1dx
      from: xdx=23xx
      =3423()+C
    2. 113xdx
      from: 1x=2x
      =2313x+C
    3. 2cos2(5x1)dx
      from: 1cos2xdx=tanx
      =25tan(5x1)+C
    4. 1sin2x2dx
      from: 1sin2x=1tanx
      =2tanx2+C

2. 基本公式による積分 (★):

  • f(ax+b)dx=1aF(ax+b)+C

  • General formula:
    • limxni=1f(xi)Δx=baf(x)dx
  • Important areas:
    • π0sinxdx=2
    • π20sinxdx=1
    • π20cosxdx=1
  • Area with y-axis:
    • Sy=|dcxdy|

  • Length of a curve:
    • L=ba1+(f(x))2dx
  • Volume:
    • V=πbay2dx
  • Surface of 3D object:
    • S=2πbay1+(y)2dx

>Top 3. Hyperbolic function (H):

  • sinhx=exex2
  • coshx=ex+ex2
  • tanhx=sinhxcoshx=exexex+ex
  • sinh1x=ln(x+x2+1)
  • cosh1x=ln(x±x21)

  • cosh2xsinh2x=1Cf:[cos2x+sin2x=1]
  • 1tanh2x=1cosh2xCf:[1+tan2x=1cos2x]
  • (sinhx)=coshx
    • =ex2ex2(x)=ex2+ex2=coshx
  • (coshx)=sinhxCf:[(cosx)=sinx]
  • (tanhx)=1cosh2x
  • sinh(x±y)=sinhxcoshy±coshxsinhy
  • cosh(x±y)=coshxcoshy±sinhxsinhy (*)
  • tanh(x±y)=tanhx±tanhy1±tanhxtanhy (*)

  • 1x2+adx=ln(x+x2+a)+C,(a>0)
  • exsinxdx=12ex(sinxcosx)+C)
  • excosxdx=12ex(sinx+cosx)+C)

  • Sigmoid function:
    • f(x)=11+eax,(a>0)
    • f(x)=aeax(1+eax)2=a1+eax(1+eax)11+eax=af(x)(1f(x))
    • f(x)=11+eax=122e12axe12ax+e12ax=12(1+tanh(12ax))

  • Point:
    • 1x2+a2dx,x2+a2dx
      • let: x=a\sinh\theta
      • or let: x+\sqrt{x^2+a^2}=t
    • 1x2a2dx,x2a2dx
      • let: x=a\cosh\theta
      • or let: x+\sqrt{x^2-a^2}=t

  • Sample:
    1. 11+x2dx...(*)
      let: x=etet2et=x+x2+1t=ln(x+x2+1)
      dx=et+et2dt
      =11+(etet)24et+et2dt
      =1et+et2et+et2dt=dt
      =t+C=ln(xLx2+1)+C
      • Cf:y=a+x2x2y2=1[hyperbola]
        here: x=etet2,[=sinht]
        x=et+et2,[=cosht]
      • (*)=1sinh2t+1cosht=dt
    2. x2+1
      let: x=sinhtdx=et+et2dt=coshtdt
      let: e2t2xet1=0et=x+x2+1,(et>0)
      t=ln(x+x2+1)
      =sinh2t+1coshtdt=cosh2tdt,(cosht>0)
      =e2t+e2t+24dt
      =e2te2t8+12t+C
    3. 21x21
      let: x=coshtdx=etet2dt=sinhtdt
      let: cosha=ea+ea2=2
      (ea)24ea+1=0ea=2+3,(ea>1)a=ln(2+3)
      =a0cosh2t1sinhtdt=a0sinh2tsinhtdt
      =a0sinh2tdt,(0<t<asinht>0)
      =a0e2t2+e2t4dt

3. 双曲線関数 (H):

  • x=coshθ,y=sinhθ
    x2y2=1 [hyperbolic]
  • eiθ=cosθ+isinθ
    cosθ=eiθ+eiθ2
    sinθ=eiθeiθ2i

>Top 4. Integral using Exponential-Logarithm (e):

  • [Exponential-Logarithm]
    1. exdx=ex+C
    2. ax=axlna+C
    3. axlnadx=ax+C
    4. lnxdx=xlnxdx=xlnxx(lnx)dx=xlnxdx
      =xlnxx+C [\ln = 1・\ln]
    5. 1xlnadx=lnax

  • [Samples]
    1. s23+7dx
      from: exdx=ex
      =32e23+7+C
    2. 13x+2dx=
      from: 1xdx=ln|x|
      =13ln|3x+2|+C
    3. 5853xdx
      from: axdx=axlna
      =355853xln5+C

4. 指数関数・対数関数の積分 (e):

  • alogax=x

>Top 5. Integral using Trigonometry (▲):

  • [Trigonometry (▲)]
    1. sinxdx=cosx+C
    2. cosxdx=sinx+C
    3. tanxdx=sinxcosxdx=(cosx)cosxdx
      =ln|cosx|+C
    4. 1tanx=cosxsinxdx=(sinx)sinxdx=
      =ln|sinx|+C
    5. 1cos2xdx=sec2xdx=(1+tan2x)dx=tanx+C
    6. csc2xdx=cotx+C
    7. 1cos2xdx=sec2xdx=(1+tan2x)dx=tanx+C
    8. 1sin2xdx=csc2dx=(1+cot2x)dx=1tanx+C=cotx+C
    9. tanxsecxdx=secx+C
    10. cotxcscxdx=cscx+C
    11. 1x2+a2dx=1atan1xa+C,(a0)
    12. 1x2a2dx=sin1xa+C,(a>0)
    13. 1x2+adx=ln|x+x2+a|+C,(a0)
    14. xndx=xn+1n+1+C,(m1)

  • [Samples]
    1. 1sin2xcos2xdx
      from: 1=sin2x+cos2x
      from: 1cos2x=1tanx
      =sin2x+cos2xsin2xcos2xdx=(1cos2x+1sin2x)dx=tanx1tanx+C
    2. sin2xcos2xdx
      from: sin4x=2sin2xcos2x
      =12sin4xdx=12(14cos4x)+C
    3. sin2xcos3xdx
      from: sinacosb=12(sin(a+b)+sin(ab))
      =12(sin5xsinx)dx=
    4. sin3xdx
      from: sin3x=3sinx4sin3x
      =14(3sinxsin3x)dx=14(3cosx+13cos3x)+C
    5. cos3xdx
      from: cos3x=3cosx4cos3x
      =14(3cosx+cos3x)dx
      =14(3sinx+13sin3x)+C
    6. tan3dx
      let: cosx=tsinxdx=dt
      1cos2xcos3xsinxdx=t21t3dt
    7. cos4xdx=(cos2x)2dx
      from: cos2x+1=2cos2x
      =14(cos2x+1)2dx
      =14(cos22x+2cos2x+1)dx
      from: cos4x+1=2cos22x
      =14{12(cos4x+1)+2cos2x+1}dx
      =14{12cos4x+2cos2x+32}dx
    8. cos5xdx
      let: sinx=tcosxdx=dt
      =(1sin2x)2cosxdx=(1t2)2dt
    9. xcos3x
      from: cos3x=3cosx+4cos3x
      =14x(cos3x+3cosx)dx
      =14{x(13sin3x+3sinx)(13sin3x+3sinx)dx}
    10. 1cos3xdx
      multiply cosx:sinx=tcosxdx=dt
      cosxcos4x=cosx(1sin2x)2dx=1(1t2)2dt
      =1(1+t)2(1t)2dt=14{11+t+11t+1(1+t)2+1(1t)2}dt=
    11. 1cos4xdx
      let: tanx=t1cos2xdx=dt
    12. 1tan3xdx
      let: \sin x=t\;→\cos xdx=dt
      =cos2xsin3xcosxdx=1sin2xsin3xcosxdx
      =1t2t3dt=(1t31t)dt
      =12t2ln|t|+C
    13. 1sin4xdx
      let: 1tanx=t1sin2xdx=dt
      =(1+1tan2x)1sin2xdx=(1+t2)(dt)
    14. xsinxcosxdx=12xsin2xdx
      here: xsin2x=x(12cos2x)(12cos2x)dx
    15. sin3xcos5xdx
      let: tanx=t1cos2xdx=dt
      =tan3x1cos2xdx=t3dt
    16. 101x1+xdx
      let: x=sinθdx=cosθdθ
      =π20

5. 三角関数の積分 (▲):

  • sin(π2x)=cosx
  • cos(π2x)=sinx
  • tan(π2x)=cosxsinx=1tanx

  • cos2x=2cos2x1=2sin2x+1
    2cos2x=cos2x+1
  • cos2x=(cosxsinx)(cosx+sinx)
  • tan2x=2tanx1tan2x
    tanx1tanx=2tan2x

  • 1+tan2x=1cos2x
  • 1+1tan2x=1sin2x

  • sin(a+b)+sin(ab)=2sinacosb
  • sin(a+b)sin(ab)=2cosasinb
  • cos(a+b)+cos(ab)=2cosacosb
  • cos(a+b)cos(ab)=2sinasinb
  • sinaxdx=1acosax
  • cosaxdx=1asinax
  • 1cos2xdx=tanx
  • 1sin2xdx=1tanx

 

  • Tips:
  • 1(1+t)2(1t)2=A1+t+B1t+C(1+t)2+1(1t)2

>Top 6. Trigonometry to Rational function (▲):

  • Rationalization:
    Pattern: 1cosxdx,1sinxdx
    1cosxdx=cosxcos2xdx=(sinx)1sin2xdx then:
    1. Pattern: f(sinx)cosxdx
      let: sinx=t cosxdx=dt
    2. Pattern: f(cosx)sinxdx
      let: cosx=t sinxdx=dt
    3. Pattern: f(tanx)1cos2xdx
      let: tanx=t 1cos2xdx=dt
    4. Pattern: 1a2x2dx
      let: x=asintdx=acosdt
      • =acosta2a2sin2tdt=acost|acost|dt
    5. Pattern: 1a2+x2dx
      let: x=atantdx=acos2tdt
      • =1a2+a2tan2tacos2t=cos2ta2acos2tdt
    6. Pattern: f(sinx,cosx)
      =f(2t1+t2,1t21+t2)21+t2dt
      let: tanx2=t
      • sinx=2t1+t2
      • cosx=1t21+t2
      • tanx=2t1t2
      • dx=21+t2dt
        • →\cos^2\frac{x}{2}=\frac{1}{\tan^2\frac{x}{2}+1}=\frac{1}{1+t^2}
        • →\cos x=2\cos^2\frac{1}{2}x-1=\frac{2}{1+t^2}-1=\frac{1-t^2}{1+t^2}
        • →\sin x=\tan x\cos x =\frac{2t}{1-t^2}\frac{1-t^2}{1+t^2}=\frac{2t}{1+t^2}
        • →\frac{dt}{dx} =\frac{(\sin\frac{x}{2})'\cos\frac{x}{2}-\sin\frac{x}{2}(\cos\frac{x}{2})'} {(\cos\frac{x}{2})^2}=\frac{1}{2}\frac{1}{\frac{1}{1+t^2}} =\frac{1+t^2}{2}
        • or, \tan\frac{x}{2}=t
          →\frac{1}{2\cos^2\frac{x}{2}}=dt→\frac{1}{2}(1+\tan^2\frac{x}{2})dx =dt→dx=\frac{2}{1+t^2}dt
    7. Pattern: \boxed{f(\sin^2 x,\; \cos^2 x)}
      =\int f \bigl(\frac{t^2}{1+t^2},\;\frac{1}{1+t^2}\bigr)\frac{1}{1+t^2}dt
      let: \tan x=t
      • →\tan^2 x=t^2
      • →\cos^2 x=\frac{1}{\tan^2x+1}=\frac{1}{1+t^2}
      • →\sin^2 x=(\tan x\cos x)^2=t^2\frac{1}{1+t^2}=\frac{t^2}{1+t^2}
      • →dx=\frac{1}{1+t^2}
        • \tan x=t\;→\frac{1}{\cos^2x}dx=dt\;→dx=\cos^2xdt =\frac{1}{1+t^2}dt

  • [Samples]
    1. \int \frac{1}{x^2+4}dx
      let: x=2\tan t→dx=\frac{2}{\cos^2t}dt
      here: \frac{1}{x^2+4}=\frac{1}{4(\tan^2t+1)}=\frac{1}{4}\cos^2t
      →\int \frac{1}{4}\cos^2t\frac{2}{\cos^2t}dt=\frac{1}{2}\int dt
    2. \int \frac{1}{x^2-2x+4}dx=\int \frac{1}{(x-1)^2+3}dx
      let: x-1=\sqrt{3}\tan t\;→dx=\frac{\sqrt{3}}{\cos^2t}dt
      =\int \frac{1}{3(\tan^2t+1)}dx=\int \frac{1}{3}\cos^2t\frac{\sqrt{3}}{\cos^2t}dt
    3. \int \frac{1}{\cos x}dx
      let: x=\tan\frac{t}{2}
      =\int \frac{1+t^2}{1-t^2}\frac{2t}{1+t^2}dt=\int \frac{2}{1-t^2}dt
      =\int (\frac{1}{1+t}+\frac{1}{1-t})dt=\ln|1+t|-\ln|1-t|+C
      or: =\int \frac{\cos x}{\cos^2x}dx=\frac{\cos x}{1-\sin^2x}dx+C
    4. \int \frac{1}{\sin x}dx
      let: x=\tan\frac{t}{2}
      \int \frac{1+t^2}{2t}\frac{2}{1+t^2}dt=\int \frac{1}{t}dt=\ln |t|+C
      or: =\int \frac{\sin x}{\sin^2x}dx=\int \frac{\sin x}{1-\cos^2x}dx
      let: \cos x=t→-\sin xdx=dt
      =-\int \frac{1}{1-t^2}dt=-\frac{1}{2}\int (\frac{1}{1-t}+\frac{1}{1+t})dt+C
    5. \int \frac{1}{\sin x+\cos x+1}dx
      let: x=\tan\frac{t}{2}
      =\int \frac{1}{\frac{2t}{1+t^2}+\frac{1-t^2}{1+t^2}+1}\frac{2}{1+t^2}dt
      =\frac{1+t^2}{2(t+1)}\frac{2}{1+t^2}dt=\int \frac{1}{t+1}dt=\ln |t+1|+C
    6. \int \frac{\sin x}{\sin x+\cos x}dx
      let: x=\tan\frac{t}{2}
      =\int \frac{2t}{(2t+1-t^2)}\frac{2}{1+t^2}dt
      =-4\int \frac{t}{(t^2+1)(t-1+\sqrt{2})(t-1-\sqrt{2})}dt
      =-4\int \bigl\{\frac{At+B}{t^2+1}+\frac{C}{t-1+\sqrt{2}} +\frac{D}{t-1-\sqrt{2}}\bigr\}dt\;[A=B=-\frac{1}{4}, C=D=\frac{1}{8}]
      =\int \bigl\{\frac{t+1}{t^2+1}-\frac{1}{2(t-1+\sqrt{2})} -\frac{1}{2(t-1-\sqrt{2})}\bigr\}dt
      =\frac{1}{2}\ln(t^2+1)+\tan^{-1}t-\frac{1}{2}\ln|t^2-2t+1|+C...(*)
      here: \tan(\tan^{-1}x)=x;\;\ln=|\frac{2t+(1-t^2)}{1+t^2}|=\ln|\sin x+\cos x| (*)=\frac{1}{2}(x-\ln|\sin x+\cos x|)+C
    7. \int \frac{1}{(1+x^2)^2}
      let: x=\tan t\;→dx=\frac{1}{\cos^2t}dt
      \int \cos^4t\frac{1}{\cos^2t}dt=\int \cos^2dt=\frac{1}{2}\int (1+\cos 2t)dt
    8. \int \tan^3xdx
      let: x=\tan t\;→dx=\frac{1}{1+t^2}dt
      =\int t^3\frac{1}{1+t^2}dt=\int (1-\frac{t}{t^2+1})dt =\int (t-\frac{1}{2}\frac{2t}{t^2+1})dt
      =\frac{1}{2}t^2-\frac{1}{2}\ln (t^2+1)+C
    9. \int \frac{1}{x^3+1}dx=\int \frac{1}{(x+1)(x^2-x+1)} =\frac{1}{3}\int (\frac{1}{x+1}-\frac{1}{2}\frac{(2x-1)-3}{x^2-x+1})dx
      here: \frac{1}{x^2-x+1}=\frac{1}{(x-\frac{1}{2})^2+\frac{3}{4}} =\frac{4}{3}\cos^2t
      let: x-\frac{1}{2}=\frac{\sqrt{3}}{2}\tan t→dx=\frac{\sqrt{3}}{2\cos^2t}dt
      =\int \frac{4}{3}\cos^2t\frac{\sqrt{3}}{2\cos^2t}dt=\int \frac{2\sqrt{3}}{3}dt
    10. \int \frac{\sqrt{\tan x}}{\sin 2x}dx
      let: \sqrt{\tan x}=t\;→dt=\frac{1}{2\sqrt{\tan x}}\frac{1}{\cos^2x}dx =\frac{1}{2t}\frac{1}{\cos^2x}dx
      =\int \frac{t}{2\sin x\cos x}2t\cos^2xdt=\int \frac{t^2}{\tan x}dt=t+C

6. 三角関数の有理関数化 (▲):

  • Tips: Lower order
  1. \sin x\cos x=\frac{1}{2}\sin 2x
  2. \sin^2x=\frac{1}{2}(1-\cos 2x)
  3. \cos^2x=\frac{1}{2}(1+\cos 2x)
  4. \tan^2x+1=\frac{1}{\cos^2x}

  5. \sin^3=\frac{3\sin x-\sin 3x}{4}
  6. \cos^3=\frac{3\cos x+\cos 3x}{4}

  7. \sin ax\cos bx =\frac{1}{2}\{\sin (a+b)x+\sin (a-b)x\}
  8. \cos ax\cos bx =\frac{1}{2}\{\cos (a+b)x+\cos (a-b)x\}
  9. \sin ax\sin bx =-\frac{1}{2}\{\cos (a+b)x-\cos (a-b)x\}

>Top 7. Integration by Substitution (♦):

  • [by Substitution (♦)]
  • [Samples]
    1. \int x^3(x^2-1)^4dx=\int x^2・x(x^2-1)^4dx
      x^2-1=t\;→xdx=\frac{1}{2}dt
      =\int (t+1)t^4dt=\frac{1}{2}\int (t^5+t^4)dt
    2. \int \frac{2x^3}{(x^2+1)^2}dx=\int \frac{x^2・2x}{(x^2+1)^2}dx
      x^2+1=t\;→2xdx=dt
      =\int \frac{x^2}{(x^2+1)^2・2xdx}=\int \frac{t-1}{t^2}dt=\int (\frac{1}{t}-\frac{1}{t^2})dt
    3. \int_1^2\frac{1}{(2x+1)^2}dx =\frac{1}{2}\bigl[-\frac{1}{2x+1}\bigr]_1^2
    4. \int \sqrt{\frac{1-x}{1+x}}dx
      let: \sqrt{\frac{1-x}{1+x}}=t\;→x=\frac{1-t^2}{1+t^2}\;→dx= -\frac{4t}{1+t^2}dt
      =\int t(-\frac{4t}{1+t^2})dx=-4\int \frac{t^2}{(1+t^2)^2}dt
      let t=\tan\theta\;→dt=\frac{1}{\cos^2\theta}d\theta
      =4\int \tan^2\theta\cos^4\theta\frac{1}{\cos^2\theta}d\theta =4\int \sin^2\theta d\theta=\int 4\theta\frac{1-\cos 2\theta}{2}d\theta
    5. \int \sin(\ln x)dx
      let: t=\ln x\;→ x=e^t\;→dx=e^tdt
      here: \int e^t\sin tdt=e^t\sin t-\int e^t\cos tdt =e^t\sin t-\bigl(e^t\cos t+\int e^t\sin tdt\bigr)
      \;→\int e^t\sin tdt=\frac{1}{2}e^t(\sin t-\cos t)+C

7. 置換積分法 (♦):

  • *Tips:
  • \int f'(ax+b)dx=\frac{1}{a}f(ax+b)+C
    [Linear change of variable, 一次式置換型]

>Top 8. Integration by Substitution with differential-attached (✦)

  • [by Substitution with differential-attached (✦)]
  • [Samples]
    1. \int \frac{e^x-e^{-x}}{e^x+e^{-x}}dx=\int \frac{*'}{*}dx=\ln (*)
    2. \int \frac{\cos x}{1-\sin x}dx=-\int \frac{*'}{*}=-\ln (*)
    3. \int \frac{2^x}{2^x+1}dx=\frac{1}{\ln 2}\int\frac{*'}{*}
    4. \int \frac{1}{\sqrt{x}}(\sqrt{x}+1)dx =2\int \frac{\frac{1}{2\sqrt{x}}}{\sqrt{x}+1}=2\int \frac{*'}{*}
    5. \int x(x^2+1)^5dx=\frac{1}{2}\int 2x(x^2+1)^5dx =\frac{1}{2}\int (*')(*)
    6. \int \frac{1}{x^2}(1+\frac{1}{x})^2dx=-\int (*)'(*)^2
    7. \int \frac{(\sqrt{x}+1)^5}{\sqrt{x}}dx=2\int (*')(*)^5
    8. \int \frac{1}{\tan^2x\sin^2x}dx=-\int (\frac{1}{\tan x})^2(-\frac{1}{\sin^2x})dx =\int (*^2)(*')
    9. \int x^5\sqrt{x^3+1}dx=
      let: x^3+1=t\;→3x^2dx=dt
      =\int \frac{1}{3}(t-1)\sqrt{t}dt
    10. \int \frac{\ln(ln x)}{x\ln x}dx
      let: \ln x=t\;→\frac{1}{x}dx=dt
      =\int \frac{\ln t}{t}, then:\;\ln t=u\;→\frac{1}{t}dt=du
      =\int udu
    11. \int \sin x\sin(\cos x)dx
      let: \cos x=t\;→-\sin xdx=dt
      =\int (-\sin x)\sin(\cos x)dx=-\int -\sin tdt
    12. \int \frac{\tan x}{(\tan x-1)^2\cos^2x}dx
      let: \tan x-1=t\;→\frac{1}{\cos^2 x}dx=dt
      =\frac{t+1}{t^2}
    13. \int \frac{e^{3x}}{\sqrt{e^x+1}}dx
      let: e^x+1=t\;→e^xdx=dt
      \int \frac{(e^x)^2e^x}{\sqrt{e^x+1}}=\int \frac{(t-1)^2}{\sqrt{t}}dt
    14. \int \cos x\ln (\sin x)dx
      let: \sin x=t\;→\cos xdx=dt
      =\int \ln tdt=t\ln t-t+C,\; [< Tips]
    15. \int 3^{x+3^x}dx
      let: 3^x=t\;→3^x\ln 3dx=dt
      =\int \frac{1}{\ln 3}・\ln 3・3^x・3^{3^x}dx=\frac{1}{\ln 3}\int 3^tdt
    16. \int \frac{1}{\sqrt{x}\sin^2\sqrt{x}}dx
      let: \sqrt{x}=t\;→\frac{1}{2\sqrt{x}}dx=dt
      =\int \frac{2}{2\sqrt{x}\sin^2\sqrt{x}}dx=2\int \frac{1}{\sin^2t}dt =\frac{2}{\tan t}+C
    17. \int \frac{1}{x^2}(1+\frac{1}{x})^2dx
      let: 1+\frac{1}{x}=t\;→-\frac{1}{x^2}dx=dt
      =-\int t't^2dt=-\frac{1}{3}t^3+C
    18. \int \frac{(\sqrt{x}+1)^5}{\sqrt{x}}dx
      let: \sqrt{x}+1=t\;→\frac{1}{2\sqrt{x}}dx=dt
      =2\int t^5dt
    19. \int \frac{1}{\tan^2x\sin^2x}dx
      let: \frac{1}{\tan x}=t\;→-\frac{1}{\sin^2x}dx=dt
      =-\int t^2dt
    20. \int \frac{1}{\sqrt{1-\sqrt{x}}}dx
      let: \sqrt{1-\sqrt{x}}=t\;→x=(1-t^2)^2\;→dx=2=4t(t^2-1)dt
      =4\int \frac{t(t^2-1)}{t}dt=4\int (t^2-1)dt
    21. \int_{\sqrt{2}}^{2}\frac{1}{x\sqrt{x^2-1}}dx
      let: x=\sec\theta\;→dx=\sec\theta\tan\theta d\theta
      and: x:\sqrt{2}→2;,\;\theta:\frac{\pi}{4}→\frac{\pi}{3}
      from: 1+\tan^2\theta=\sec^2\theta
      =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{1}{\sec\theta\sqrt{\sec^2\theta-1}} \sec\theta\tan\theta dx =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}d\theta=\frac{\pi}{12}
    22. \frac{x^2}{(x\sin x+\cos x)^2}dx
      here: (x\sin x+\cos x)'=\sin x+x\cos x-\sin x=x\cos x
      =\int \frac{x}{\cos x}\frac{x\cos x}{(x\sin x+\cos x)^2}dx =\bigl[-\frac{x}{\cos x}\frac{1}{x\sin x+\cos x}\bigr] +\int \frac{\cos x+x\sin x}{\cos^2x}\frac{1}{x\sin x+\cos x}dx

8. 置換積分法 (微分接触型) (✦):

  • \int \frac{f'(x)}{f(x)}dx=\ln|f(x)|
  • \int (f(x))^af'(x)dx =\frac{(f(x))^{a+1}}{a+1},\;(a≠-1)
  • f(\sin x)\cos x
  • f(\cos x)\sin x
  • f(\tan x)\frac{1}{\cos^2x}
  • f(\frac{1}{\tan x})\frac{1}{\sin^2x}
  • Tips-differential:
    • (\tan x)'=\frac{1}{\cos^2x}
    • (\frac{1}{\tan x})'=-\frac{1}{\sin^2x}
    • (\frac{1}{x})'=-\frac{1}{x^2}
    • (\sqrt{x})'=\frac{1}{2\sqrt{x}}
    • (\ln x)'=\frac{1}{x}
    • (a^x)'=a^x\ln a
    • (a+\sin^2x)'=2\sin x\cos x=\sin 2x
  • Tips-integral
    • \int \ln x=x\ln x-x
    • substitute to:
      \sqrt{\frac{ax+b}{cx+d}}_n=t
    • \frac{1-x}{1+x}=t^2 \;→x=\frac{1-t^2}{1+t^2}

>Top 9. Integration by Parts (♥):

  • [by Parts (♥)]
    1. \int f^0g^0dx=f^0g^{-1}-\int f^1g^{-1}dx
      =f^0g^{-1}-\{f^1g^{-2}-\int f^2g^{-2}\}
      =f^0g^{-1}-f^1g^{-2}+\int f^2g^{-2}
      =f^0g^{-1}-f^1g^{-2}+f^2g^{-3}-f^3g^{-4}+f^4g^{-5}-\cdots±\int
    2. \int f^0e^xdx=(f^0-f^1+f^2-f^3+f^4-\cdots)e^x
    3. \int f^0e^{-x}dx=-(f^0+f^1+f^2+f^3+f^4+\cdots)e^{-x}
    4. \int f^0e^{nx}dx=\bigl(\frac{f^0}{n}-\frac{f^1}{n^2} +\frac{f^2}{n^3}-\frac{f^3}{n^4}+\cdots\bigr)e^x
    5. Cf: f(x)g(x)=f(x)\cos x
      =f^0g^{-1}-f^1g^{-2}+f^2g^{-3}-f^3g^{-4}+f^4g^{-5}
      =f^0\sin x-f^1(-\cos x)+f^2(-\sin x)-f^3(\cos x)+f^4(\sin x)-\cdots
      or, =f^0g^{-1}+f^1g^1+f^2g^2+f^3g^3+f^4g^4+f^5g^5+\cdots
      =f^0g\sin x+f^1\cos x+f^2(-\sin x)+f^3(-\cos x)+f^4(\sin x)+\cdots
    6. Cf: f(x)g(x)=f(x)\sin x
      =f^0g^{-1}-f^1g^{-2}+f^2g^{-3}-f^3g^{-4}+f^4g^{-5}
      =f^0(-cos x)-f^1(-\sin x)+f^2(\cos x)-f^3(\sin x)+f^4(-\cos x)-\cdots
      or, =f^0g^{-1}+f^1g^1+f^2g^2+f^3g^3+f^4g^4+f^5g^5+\cdots
      =f^0(-\cos x)+f^1(\sin x)+f^2(\cos x)+f^3(-\sin x)+f^4(-\cos x)+\cdots

  • [Samples]
    1. \int_{0}^{1}\ln (x^2+1)dx=\int_{0}^{1}(x)'\ln (x^2+1)dx =\bigl[x\ln (x^2+1)\bigr]_0^1 -\int_{0}^{1}x・\frac{2x}{x^2+1}dx
      here: \int_0^1 \frac{1}{x^2+1}dx=
      let: x=\tan\theta\;→dx=\frac{1}{\cos^2\theta}d\theta
      =\int_{0}^{\frac{\pi}{4}}\frac{1}{\tan^2\theta+1}\frac{1}{\cos^2}d\theta =\int_{0}^{\frac{\pi}{4}}d\theta=\frac{\pi}{4}
    2. \int (3x-4)^2(x-2)^5xdx
      =(3x-4)^2\frac{1}{6}(x-2)^6-\{(3x-4)\frac{1}{7}(x-2)^7 -\frac{3}{7}\frac{1}{8}(x-2)^8 \}
    3. \int xe^{2x}dx=x\frac{1}{2}e^{2x}-\frac{1}{2}\int e^{2x}dx
    4. \int \frac{x}{e^x}dx=x(-e^{-x})-\int (-e^{-x})dx
    5. \int x・2^xdx=x\frac{2^x}{\ln 2}-\int \frac{2^x}{\ln 2}
    6. \int x\sin xdx=x(-\cos x)-\int (-\cos x)dx
    7. \int x^2\cos xdx=x^2\sin x-2x(-\cos x)+2(-\sin x)+C
    8. \int x^2\sin\frac{x}{2}dx=x^2(-2\cos\frac{x}{2}) -\int 2x(-2\cos\frac{x}{2})dx
      =x^2(-2\cos\frac{x}{2})+4\{x(2\sin\frac{x}{2})-\int 2\sin\frac{x}{2}\}
    9. \int \frac{x}{\cos^2x}dx=x\tan x-\int \tan xdx=x\tan x -\int \frac{-(\cos x)'}{\cos x}dx=x\tan x+\ln|\cos x|
    10. e^{-x}\sin 2xdx=I=-e^{-x}\sin 2x-\int -e^{-x}2\cos 2xdx
      =-e^{-x}\sin 2x+2\{-e^{-x}\cos 2x-\int -e^{-x}(-2\sin 2x)dx\}
      =-e^{-x}\sin 2x-2\{e^{-x}\cos 2x-4\int e^{-x}\sin 2xdx\; [homotype]
      →5I=-e^{-x}(\sin 2x+2\cos 2x)
    11. \int x^4\sin xdx
      =x^4(-\cos x)-4x^3(-\sin x)+12x^2(\cos x)-24x(\sin x)+24(-\cos x)+C
    12. \int x^4e^xdx=(x^4-4x^3+12x^2-24x+24)e^x
    13. x^32^xdx=x^3\frac{2^x}{\ln 2}-3x^2\frac{2^x}{(\ln 2)^2} +6x\frac{2^x}{(\ln 2)^3}-6\frac{2^x}{(\ln 2)^4}+C
    14. \int (x^3-2x^2)\cos 2xdx
      =(x^3-2x^2)(\frac{1}{2}\sin 2x)-(3x^2-4)(-\frac{1}{4}\cos 2x)
      +(6x-4)(-\frac{1}{8}\sin 2x)-(6)(\frac{1}{16}\cos 2x)+C
    15. \int (\ln x)^4dx
      let: \ln x=t\;→x=e^t\;→dx=e^tdt
      =\int t^4e^tdt=(t^4-4t^3+12t^2-24t+24)e^t+C
    16. \int \frac{(\ln x)^3}{x^2}dx
      let: \ln x=t\;→x=e^t\;→dx=e^tdt
      =\int \frac{t^3}{(e^t)^2}e^tdt=\int t^3e^{-t}dt
      =-(t^3+3t^2+6t+6)e^{-t}+C

9. 部分積分法 (♥):

  • >Top Integration by parts: (integral-first!)
  • integralbyparts.gif
  • \int f^{(0)}g^{(0)}
    =f^{(0)}g^{(-1)}-f^{(1)}g^{(-2)}
    +f^{(2)}g^{(-3)}-f^{(3)}g^{(-4)}
    +f^{(4)}g^{(-5)}-f^{(5)}g^{(-6)} ...
  • Pattern:
    1. x^m・(ax+b)^n
    2. x^m・a^{nx}
    3. x^me^{nx}
    4. x^m・\sin nx
    5. x^m・\cos nx
    6. x^m(\ln x)^n
    7. e^{mx}\sin nx
    8. e^{mx}\cos nx

  • Tips:
    1. lower order of: e^{nx},\;a^{nx}
    2. (\frac{e^{2x}}{2})'=e^{2x}
    3. (a^x)'=a^x\ln a
    4. \int \tan x=\int \frac{\sin x}{\cos x}
      =-\int \frac{(\cos x)'}{\cos x} =-\ln(\cos x)+C
    5. \int \cot x=\int \frac{\cos x}{\sin x}
      =\int \frac{(\sin x)'}{\sin x} =\ln(\sin x)+C

>Top 10. Integral of product of exponential:

  • [Type of \int (x-a)^m(x-b)^ndx]
    1. \int_a^b(x-a)(x-b)dx=\bigl[\frac{1}{2}(x-a)^2(x-b)\bigr]_a^b -\int_{a}^{b}\frac{1}{2}(x-a)^2dx
      =-\frac{1}{2}\bigl[\frac{1}{3}(x-a)^3\bigr]_a^b=-\frac{1}{6}(b-a)^3
    2. \int_a^b(x-a)^2(x-b)dx=\bigl[\frac{1}{3}(x-a)^3(x-b)\bigr]_a^b -\int_a^b\frac{1}{3}(x-a)^3dx
      =-\frac{1}{3}\bigl[\frac{1}{4}(x-a)^4\bigr]_a^b=-\frac{1}{12}(b-a)^4
    3. \int_a^b(x-a)^2(x-b)^2dx=\bigl[\frac{1}{3}(x-a)^3(x-b) -\frac{1}{3・4}(x-a)^42(x-b)
      +\frac{1}{3・4・5}(x-a)^5・2\bigr]_a^b=-\frac{1}{30}(b-a)^5
    4. \int_{2}^{3}(2x-6)\sqrt{x-2}=\bigl[(2x-6)\{\frac{2}{3}(x-2)^{\frac{3}{2}}\} \bigr]_2^3-\int_{3}^{2}2\frac{2}{3}(x-2)^{\frac{3}{2}}dx

10. 指数関数の積 (e):

  1. attribute to: \int (x-a)^ndx =\frac{1}{n+1}(x-a)^{n+1}+C
  2. \int_{a}^{b}(x-a)(x-b)dx =-\frac{1}{6}(b-a)^3
  3. \int_{a}^{b}(x-a)^2(x-b)dx =-\frac{1}{12}(b-a)^4
  4. \int_{a}^{b}(x-a)^2(x-b)^2dx =\frac{1}{30}(b-a)^5

>Top 11. Definite integral with absolute value:

  • Split integration interval:
    1. \int_{\frac{1}{e}}^{e}|\ln x|dx=\int_{\frac{1}{e}}^{1}(-\ln x)dx +\int_{1}^{e}\ln xdx
      =\bigl[-x\ln x+x\bigr]_{\frac{1}{e}}^1+\bigl[x\ln x-x\bigr]_1^e
    2. \int_{\pi}^{0}|\sqrt{3}\sin x+\cos x|dx
      =\int_{\frac{5}{6}\pi}^{0}2\sin(x+\frac{\pi}{6})dx +\int_{\pi}^{\frac{5}{6}\pi}\{-2\sin (x+\frac{\pi}{6})dx\}

11. 絶対値付の定積分 (||):

  • recurrence formula: 漸化式
  • \ln x=x\ln x-x+C
  • a\sin\theta+b\cos\theta =A\sin (\theta+\alpha)
  • \sin\theta+\sqrt{3}\cos\theta =2\sin (\theta+\frac{\pi}{3})

>Top 12. Integral of Fractional function (▼):

  • Make less order of numerator than denomirator:
    1. \int \frac{2x+3}{4x-1}=\int \frac{\frac{1}{2}(4x-1)+\frac{7}{2}}{4x-1} =\int \frac{1}{2}+\frac{7}{2(4x-1)}dx=\frac{1}{2}x+\frac{7}{8}\ln|4x-1|+C
    2. \int \frac{x-3}{(x-1)(x-2)}=\int (\frac{2}{x-1}-\frac{1}{x-2})dx
    3. \int \frac{1}{x(x+1)(x+2)}dx
      here: \frac{1}{x(x+1)(x+2)}=\frac{1}{2}\{\frac{1}{x(x+1)}-\frac{1}{(x+1)(x+2)}\}=\frac{1}{2}\{(\frac{1}{x}-\frac{1}{x+1})-(\frac{1}{x+1}-\frac{1}{x+2})\}}
      \int* =\frac{1}{2}\ln|x|-\ln|x+1|+\frac{1}{2}\ln|x+2|+C =\frac{1}{2}\ln\frac{|x(x+2)|}{(x+1)^2}+C

12. 分数関数の積分 (♣):

  • \frac{1}{ab}=\frac{1}{b-a} (\frac{1}{a}-\frac{1}{b})
  • \frac{1}{abc}=\frac{1}{c-a} (\frac{1}{ab}-\frac{1}{bc})

>Top 13. Integral using symmetry:

  • Symmetri integral:\cases{a&b\\c&d}
    • \cases{\int_{-a}^{a}f(x)dx=0\;\text{[odd function]}\\ \int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\;\text{[even function]}}w

  • Symmetric function:
    • I=\int_{\frac{\pi}{2}}^{0}\frac{\sin x}{\sin x+\cos x}dx
      →\int_{\frac{\pi}{2}}^{0}\frac{\cos x}{\sin x+\cos x}dx
      add: →\frac{1}{2}\int_{\frac{\pi}{2}}^{0}dx=\frac{\pi}{4}
    • I=\int_{-1}^{1}\frac{1}{2}dx\;→\int_{-1}^{1}\frac{e^x}{e^x+e^{-x}}dx
      symmery: →I=\int_{-1}^{1}\frac{e^{-x}}{e^x+e^{-x}}dx
      add: \frac{1}{2}\int_{1}^{-1}dx=1

  • Odd/even function:
    1. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos x(\sin x-x+1)dx
      =\int_{*}^{*}(\cos x\sin x-x\cos x+\cos x)dx=2\bigl[\sin x\bigr]_0^{2\pi}
    2. \int_1^{-1}(e^x+e^{-x})dx=2\bigl[e^x-e^{-x}\bigr]_0^1

13. 対称性による積分 (◐):

  • f-x)=-f(x),\; [odd function]
    • Eg: x\cos x,\;\cos x\sin x
  • f(-x)=f(x),\; [even function]

>Top 14. King Property (♠):

  • I=\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx
    • →2I=\int_{a}^{b}\{f(x)+f(a+b-x)\}dx
    1. I=\int_{2}^{3}\frac{x^2}{x^2+(5-x)^2}dx
      →2I=\int_{2}^{3}\{\frac{x^2}{x^2+(5-x)^2}+\frac{(5-x)^2}{x^2}\}dx =\int_{2}^{3}dx=1→I=\frac{1}{2}
    2. I=\int_{0}^{\pi}\frac{x\sin x}{1+\cos^2x}dx
      →2I=\int_{0}^{\pi}\{\frac{x\sin x}{1+\cos^2x} +\frac{(\pi-x)\sin x}{1+\cos^2x}\}dx=\pi\int_{0}^{\pi}\frac{\sin x}{1+\cos^2x}dx
      here let: \cos x=t\;→-\sin xdx=dt\;→(x:0→\pi);\;(t:1→-1)
      =\pi\int_{-1}^1\frac{1}{1+t^2}dt
      let: t=\tan\theta→dt=\frac{1}{\cos^2\theta}d\theta, \;(t:-1→1);\;(\theta:-\frac{\pi}{4}→\frac{\pi}{4})
      =\pi\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}d\theta =\frac{\pi^2}{2}→I=\frac{\pi^2}{4}
    3. I=\int_2^4\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}
      =\int_2^4\frac{\sqrt{\ln(x+3)}}{\sqrt{\ln(x+3)}+\sqrt{\ln(9-x)}}
      [x\;→2+4-x]\; King property
      2I=\int_2^4 1dx=2\;→I=1

14. キング・プロパティ (♠):

  • transfer: (x,y)→(X,Y)
    • y=Y
    • \frac{x+X}{2}=\frac{a+b}{2}
      →X=a+b-x

>Top 15. Recurrsive function (♺):

  • Appear the original integral:
    • I=\int e^{ax}\sin bxdx
      =e^{ax}\frac{1}{b}(-\cos bx)+e^{ax}\frac{a}{b^2}\sin bx-\frac{a^2}{b^2} \int e^{ax}\sin bxdx
      →\frac{a^2+b^2}{b^2}I=e^{ax}(-\frac{1}{b}\cos bx+\frac{a}{b^2}\sin bx)
      I=\frac{1}{a^2+b^2}e^{ax}(a\sin bx-b\cos bx)+C
    • I=\int e^{ax}\cos bxdx
      =e^{ax}\frac{1}{b}\sin bx+e^{ax}\frac{a}{b^2}\cos bx-\frac{a^2}{b^2} \int e^{ax}\cos bxdx
      →\frac{a^2+b^2}{b^2}I=e^{ax}(\frac{1}{b}\sin bx+\frac{a}{b^2}\cos bx)
      I=\frac{1}{a^2+b^2}e^{ax}(b\sin bx+a\cos bx)+C
    • \int xe^x\sin xdx
      here: \int e^x\sin xdx=\frac{1}{2}e^x(\sin x-\cos x)+C,\; \int e^x\cos xdx=\frac{1}{2}e^x(\sin x+\cos x)+C
      =x\frac{1}{2}e^x(\sin x-\cos x)-\frac{1}{2}\int e^x(\sin x-\cos x)dx
      =\frac{1}{2}xe^x(\sin x-\cos x)-\frac{1}{2}\int e^x\sin xdx +\frac{1}{2}\int e^x\cos xdx
      =\frac{1}{2}xe^x(\sin x-\cos x)-\frac{1}{4}e^x(\sin x-\cos x) +\frac{1}{4}e^x(\sin x+\cos x)
      =\frac{1}{2}e^x(\sin x-\cos x)+\frac{1}{2}e^x\cos x+C

15. 再帰関数(♺)::

>Top 16. Recurrence relation (n-1):

  • Difference sequence:
  1. a_{n+1}=pa_n+q...(*)
    1. \alpha=p\alpha+q...(**) [characteristic eq]\;→(*)-(**)
    2. a_{n+1}=4a_n-3,\; a_1=2
      →a_{n+1}-1=4(a_n-1)\;→a_n-1=(a_1-1)4^{n-1}=4^{n-1}
      →a_n=4^{n-1}+1

  2. a_{n+1}=pa_n+qr^n [divided by r^{n+1}]
    • a_{n+1}=3a_n+4・5^n,\;a_1=2
      \frac{a_{n+1}}{5^{n+1}}=\frac{3}{5}\frac{a_n}{5^n}+\frac{4}{5}
      →(\frac{a_{n+1}}{5^{n+1}-2})=\frac{3}{5}(\frac{a_n}{5^n}-2) [by char.eq]
      →\frac{a_n}{5^n}-2=(a_1)(5)^{n-1}
      →\frac{a_n}{5^n}=ー\frac{8}{5}(\frac{3}{5})^{n-1}+2 =a_n=-8・3^{n-1}+2

  3. a_{n+1}=pa_n+f^{(n)}
    • a_{n+1}=2a_n+n^2-2n+3,\;a_1=3...(*)
    • target: a_{n+1}+\alpha(n+1)^2+\beta(n+1)+\gamma =2(a_n+\alpha n^2+\beta n+\gamma)
      ⇔a_{n+1}=2a_n+\alpha n^2+(-2\alpha+\beta)n+\gamma...(**)
    • compare (*) & (**): \alpha=1,\;-2\alpha+\beta=-2,\;\gamma=3
      \alpha=1,\;\beta=0,\;\gamma=3
      →a_{n+1}+(n+1)^2+3=2(a_n+n^2+3)
      a_n=n^2+3=(a_1+1+3)2^{n-1}→a_n=2^{n-1}-n^2-3

  4. a_{n+1}=f(n)a_n
    • a_{n+1}=\frac{n+1}{n}a_n,\;a_1=3,\;(n≥2)
      a_n=\frac{n}{n-1}a_{n-1}=\frac{n}{n-1}\frac{n-1}{n-2}a_{n-2} =\frac{n}{n-1}\frac{n-1}{n-2}\frac{n-2}{n-3}\cdots\frac{2}{1}a_1=na_1=3n
      (n=1) is also available.\;\therefore a_n=3n

  5. a_{n+1}=p(a_n)^q
    • a_{n+1}=3\sqrt{a_n},\;a_1=27
    • logarithumic tranform (sequence>0):
      →\log_3a_{n+1}=\log_3 3a_n^{\frac{1}{2}}=1+\frac{1}{2}\log_3a_n
      →\log_3a_{n+1}=\frac{1}{2}\log_3a_n+1 →\log_3a_{n+1}=\frac{1}{2}(\log_3a_n-2)
      →\log_3a_n-2=(\log_3a_1-2)(\frac{1}{2})^{n-1} →\log_3a_n=(\frac{1}{2})^{n-1}+2\therefore\;a_n=3^{(\frac{1}{2})^{n-1}+2}

  6. Recurrence including S_n:
    • a_1=S_1,\;a_{n+1}=S_{n+1}-S_n
    • S_n=4a_n-6,\; when n=1→a_1=4a_1-6→a_1=2
      →a_{n+1}=S_{n+1}-S_n=4a_{n+1}-6(n+1)-4a_n+6n=4a_{n+1}-4a_n-6
      →a_{n+1}=\frac{4}{3}a_n+2
      a_{n+1}+6=\frac{4}{3}(a_n+6)\; [\alpha=\frac{4}{3}\alpha+2]
      →a_n+6=(a_1+6)(\frac{4}{3})^{n-1}=8(\frac{4}{3})^{n-1}
      \therefore\;a_n=8(\frac{4}{3})^{n-1}-6

  7. a_{n+2}+pa_{n+1}+qa_n=0
    • →\alpha^2+p\alpha+q=0
      →\cases{a_{n+2}-\alpha_1a_{n+1}=\alpha_2(a_{n+1}-\alpha_1a_n) \\a_{n+2}-\alpha_2a_{n+1}=\alpha_1(a_{n+1}-\alpha_2a_n)}
      ⇔a_{n+2}-(\alpha_1+\alpha_2)a_{n+1}+\alpha_1\alpha_2 a_n
    • a_{n+2}-5a_{n;1}+6a_n=0,\;a_1=4,\;a_2=1
      • \alpha^2-5\alpha+6=0→(\alpha-2)(\alpha-3)=0→\alpha=2,\;3
        \cases{a_{n+2}-2a_{n+1}=3(a_{n+1}-2a_n)...(*) \\a_{n+2}-3a_{n+1}=2(a_{n+1}-3a_n)...(**)}
      • from (*):a_{n+1}-2a_n=(a_2-2a_1)3^{n-1}=-7・3^{n-1}
      • from (**):a_{n+1}-3a_n=(a_2-3a_1)2^{n-1}=-11・2^{n-1}
      • a_n=-7・3^{n-1}+11・2^{n-1}
    • a_{n+2}-6a_{n+1}+9a_n=0→a_1=1,\;a_2=5
      →a_{n+2}-3a_{n+1}=3(a_{n+1}-3a_n),\;[\alpha=3]
      a_{n+1}-3a_n=(a_2-3a_1)3^{n-1}=2・3^{n-1}
      →a_{n+1}=3a_n+\frac{2}{3}3^n →\frac{a_{n+1}}{3^{n+1}}=\frac{a_n}{3^n}+\frac{2}{9}
      \frac{a_n}{3^n}=\frac{a_1}{3}+(n-1)\frac{2}{9}
      \therefore\;a_n=3^{n-2}(2n+1)
  • I_n=\int \sin^nxdx,\;(n=0,1,2,\cdots)
    • I_n=-\frac{1}{n}\sin^{n-1}x\cos x+\frac{n-1}{n}I_{n-2},\;(n=2,3,4,\cdots)
    • Proof: I_n=\int \sin^{n-1}\sin xdx
      let: f=\sin^{n-1}x\;→f'=(n-1)\sin^{n-2}x\cos x,\;g=-\cos x\;→g'=\sin x
      I_n=\sin^{n-1}x(-\cos x)-\int (n-1)\sin^{n-2}x\cos x(-\cos x)dx
      =\sin^{n-1}x(-\cos x)+(n-1)\int \sin^{n-2}x(1-\sin^2x)dx
      →I_n=-\sin^{n-1}x\cos x+(n-1)I_{n-2}-(n-1)I_n
      →nI_n=-\sin^{n-1}x\cos x+(n-1)I_{n-2}
      \therefore\;I_n=-\frac{1}{n}\sin^{n-1}x\cos x+\frac{n-1}{n}I_{n-2}

  • I_n=\int \cos^nxdx,\;(n=0,1,2,\cdots)
    • I_n=\frac{1}{n}\cos^{n-1}x\sin x+\frac{n-1}{n}I_{n-2},\;(n=2,3,4,\cdots)
    • Proof: I_n=\int \cos^{n-1}\cos xdx
      let: f=\cos^{n-1}x\;→f'=(n-1)\cos^{n-2}x(-\sin x),\;g=\sin x\;→g'=\cos x
      I_n=\cos^{n-1}x\sin x-\int (n-1)\cos^{n-2}x(-\sin x)\sin xdx
      =\cos^{n-1}x\sin x+(n-1)\int \cos^{n-2}x(1-\cos^2x)dx
      →I_n=\cos^{n-1}x\sin x+(n-1)I_{n-2}-(n-1)I_n
      →nI_n=\cos^{n-1}x\sin x+(n-1)I_{n-2}
      \therefore\;I_n=\frac{1}{n}\cos^{n-1}x\sin x+\frac{n-1}{n}I_{n-2}

  • I_n=\tan^ndx,\;(n=0,1,2,\cdots)
    • I_n=\frac{1}{n-1}\tan^{n-1}x-I_{n-2},\;(n=2,3,4,\cdots)
    • Proof: In=\int \tan^{n-2}\tan^2xdx=\int \tan^{n-2}(\frac{1}{\cos^2x}-1)dx
      =\int \bigl(\frac{\tan^{n-2}x}{\cos^2x}-\tan^{n-2}\bigr)dx =\int \frac{\tan^{n-2}x}{\cos^2x}dx-I_{n-2}
      let: t=\tan x\;→dt=\frac{1}{\cos^2x}dx
      here: \int \frac{\tan^{n-2}x}{\cos^2x}dx=\int t^{n-2}dt=\frac{t^{n-1}}{n-1}+C =\frac{\tan^{n-1}x}{n-1}+C
      \therefore\;I_n=\frac{1}{n-1}\tan^{n-1}x-I_{n-2}

  • I_n=\int (\ln x)^ndx,\;(n=0,1,2,\cdots)
    • I_n=x(\ln x)^n-nI_{n-1},\;(n=1,2,3,\cdots)
    • Proof: let: f=(\ln x)^n\;→f'=n(\ln x)^{n-1}\frac{1}{x};\;g=x\;→g'=1
      \int (\ln x)^ndx=(\ln x)^nx-\int n()^{n-1}\frac{1}{x}xdx =x(\ln x)^n-n\int (\ln x)^{n-1}dx
      \therefore\;I_n=x(\ln x)^n-nI_{n-1}

  • I_n=\int x^ne^xdx,\;(n=1,2,3,\cdots)
    • I_n=x^ne^x-nI_{n-1}
    • Proof: I_n=x^ne^x-\int nx^{n-1}e^xdx=x-ne^x-nI_{n-1}

  • I_n=\int \frac{x^n}{e^x}dx,\;(n=1,2,3,\cdots)
    • I_n=-\frac{x^n}{e^x}-nI_{n-1}
    • Proof: I_n=\int x^ne^{-1}=x^n(-e^{-x})-\int nx^{n-1}(-e^{-x}) =-x^ne^{-x}+nI_{n-1}

  • I_n=\int \frac{e^x}{x^n}dx,\;(n=1,2,3,\cdots)
    • I_n=-\frac{e^x}{(n-1)x^{n-1}}+\frac{1}{n-1}I_{n-1}
    • Proof: I_n=\int e^xx^{-n} =e^x\frac{1}{-n+1}x^{-n+1}-\int e^x\frac{1}{-n+1}x^{-n+1}dx =\frac{-e^x}{(n-1)x^{n-1}}+\frac{1}{n-1}I_{n-1}

  • I_n=\int x^m(\ln x)^ndx,\;(n=1,2,3,\cdots)
    • I_n=\frac{x^{m+1}(\ln x)^n}{m+1}-\frac{n}{m+1}I_{n-1}
    • Proof: \int (\ln x)^nx^mdx =(\ln x)^n\frac{1}{m+1}x^{m+1} -\int n(\ln x)^{n-1}\frac{1}{x}\frac{1}{m+1}x^{m+1} =\frac{x^{m+1}(\ln x)^n}{m+1}-\frac{n}{m+1}I_{n-1}

  • I_n=\int x^n\sin xdx,\;(n=2,3,4,\cdots)
    • I_n=-x^n\cos x+nx^{n-1}\sin x-n(n-1)I_{n-2}
    • Proof; from: \int f^0g^0=f^0g^{-1}-f^1g^{-2}+\int f^2g^{-2}
      let: f^0=x^n,\;g^0=\sin x
    • I_n=x^n(-\cos x)-nx^{n-1}(-\sin x)+\int n(n-1)x^{n-2}(-\sin x)dx
      =-x^n\cos x+nx^{n-1}\sin x-n(n-1)\int x^{n-2}\sin xdx
      \therefore\; I_n=-x^n\cos x+nx^{n-1}\sin x-n(n-1)I_{n-2}

16. 漸化式 (n-1):

  • arithmetic sequence: 等差型
  • geometric sequence: 等比型
  • difference sequence: 階差型
  1. a_{n+1}=a_n+d
  2. a_{n+1}=ra_n
  3. a_{n+1}=a_n+f(n)
  4. a_{n+1}=pa_n+q
  5. a_{n+1}=pa_n+q・r^n
  6. a_{n+1}=pa_n+f(n)
  7. a_{n+1}=f(n)a_n
  8. a_{n+1}=p(a_n)^q
  9. a_{n+1}=pa_n
  10. S_n included
  11. a_{n+2}+pa_{n+1}+qa_n=0

>Top 17. Parametric variable (✔):

  • Parameter:
    1. \int \frac{1}{\sqrt{1-x^2}}dx
      from: x^2+y^2=1
      let: x=\sin t\;→dx=\cos tdt
      =\int \frac{1}{\cos t}\cos tdt=\int dt

    2. \int \frac{1}{\sqrt{1+x^2}}dx
      from:
      let: x=\frac{1}{2}(e^t-e^{-t})\;(=\sinh t) [hyperbolic]
      →dx=\frac{1}{2}(e^t+e^{-t})dt\;→e^t=x+\sqrt{x^2+1}→t=\ln (x+\sqrt{x^2+1})
      =\int \frac{1}{\sqrt{1+\frac{(e^t+e^{-t})^2}{4}}}\frac{et+e^{-t}}{2}dt =\int \frac{1}{\frac{e^t+e^{-t}}{2}}\frac{e^t+e^{-t}}{2}dt=\int dt =\ln (x+\sqrt{x^2+1})+C

    3. Parameter:
      • \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}
      • \frac{d^2y}{dx^2}=\frac{d}{dx}(\frac{dy}{dx}) =\frac{d}{dt}(\frac{dy}{dx})\frac{dt}{dx}
    4. [Sample]
      • \cases{x=t-\sin t\\y=1-\cos t}

17. 媒介変数 (✔):

>Top 18. Beta function (Euler integral of the first kind (β)):

  • \int_{b}^{a}(x-a)^m(x-b)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(b-a)^{m+n+1}
    =\bigl[\frac{1}{m+1}(x-a)^{m+1}(x-b)^n\bigr]_a^b -\int \frac{n}{m+1}(x-a)^{m+1}(x-b)^{n-1}dx
    =\frac{(-1)^nm!n!}{(m+n-1)!}\int_{b}^{a}\frac{(x-a)^{m+n}}{m+n}dx
    here coefficient: \frac{n}{m+1}\frac{n-1}{m+2}\cdots\frac{2}{m+n-1} =\frac{m!n!}{(m+n-1)!}
    • m=1, n=1:\;→\int_{b}^{a}(x-a)(x-b)dx=-\frac{1}{6}(b-a)^3
    • m=2, n=1:\;→\int_{b}^{a}(x-a)^2(x-b)dx=-\frac{1}{12}(b-a)^4
    • m=2, n=2:\;→\int_{b}^{a}(x-a)^2(x-b)^2dx=\frac{1}{30}(b-a)^5

18. ベータ関数 (β):

  • eulerintegral.gif

>Top 19. Gaussian integral:

  • Gaussian integral:
  • I=\int_{-\infty}^{\infty}e^{-x^2}dx
    • I^2=\bigl(\int_{-\infty}^{\infty}e^{-x^2}dx\bigr) \bigl(\int_{-\infty}^{\infty}e^{-y^2}dy\bigr)
      =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-(x^2+y^2)}dxdy
    • let: x=r\cos\theta,\;y=r\sin\theta
      \;→I^2=\int_{0}^{2\pi}\int_{0}^{\infty}e^{-r^2)}rdrd\theta =\int_{0}^{2\pi}d\theta\int_{0}^{\infty}re^{-r^2}dr
      =2\pi\bigl[-\frac{1}{2}e^{-r^2}\bigr]_0^{\infty}=\pi
      I=\sqrt{\pi},\;[I>0]
  • ¶1: \int_{-\infty}^{\infty}e^{-ax^2}dx,\;(a>0)
    • let: y=\sqrt{a}x,\;dy=\sqrt{a}dx
      =\int_{-\infty}^{\infty}e^{-y^2}\frac{1}{\sqrt{a}}dy=\sqrt{\frac{\pi}{a}}
  • ¶2: \int_0^{\infty}e^{-ax^2}dx,\;(a>0)
    • =\frac{1}{2}\sqrt{\frac{\pi}{a}}\;[even function]
  • ¶3: \int_{0}^{\infty}xe^{-ax^2}dx,\;(a>0)
    =\bigl[-\frac{1}{2a}e^{-ax^2}\bigr]_0^{\infty}=\frac{1}{2a}\; [odd function]
  • ¶4: G=\int_{-\infty}^{\infty}x^2e^{-ax^2}dx,\;(a>0)
    I(a)=\int_{-\infty}^{\infty}e^{-ax^2}dx
    →\frac{d(a)}{da}=\int_{-\infty}^{\infty}\frac{\partial }{\partial a}(e^{-ax^2})dx
    =\int_{-\infty}^{\infty}x^2e^{-ax^2}dx
    \therefore\;G=-\frac{dI(a)}{da}=\frac{d}{da}(\pi^{\frac{1}{2}}a^{-\frac{1}{2}}) =\frac{1}{2a}\sqrt{\frac{\pi}{a}}
  • ¶5: \int_0^{\infty}x^3e^{-ax^2}dx,\;(a>0)
    =\int_0^{\infty}x^2xe^{-ax^2}dx=\bigl[x^2(-\frac{1}{2}e^{-ax^2})\bigr]_0^{\infty} - \int_0^{\infty}2x(-\frac{1}{2}e^{-ax^2})dx =\frac{1}{a}\int_0^{\infty}xe^{-ax^2}dx=\frac{1}{2a^2}\; [←¶3]
  • ¶6: \int_{-\infty}^{\infty}x^4e^{-ax^2}dx,\;(a>0)
    =\frac{d^2}{da^2}(\pi^{\frac{1}{2}}a^{-\frac{1}{2}}) =\frac{3}{4a^2}\sqrt{\frac{\pi}{a}}
  • ¶7: [general form]
    \cases{\int_{0}^{\infty}x^{2n+1}e^{-ax^2}dx=\frac{n!}{2a^{n+1}} \\\int_{-\infty}^{\infty}x^{2n}e^{-ax^2}dx =\frac{(2n-1)!!}{2^na^n}\sqrt{\frac{\pi}{a}}}
  • ¶8: \int_{-\infty}^{\infty}e^{-ax^2+b+c}dx,\;(a>0)
    =\int_{-\infty}^{\infty}e^{-a(x-\frac{b}{2a})^2+\frac{b^2}{4a}+c}dx =e^{\frac{b^2}{4a}+c}\int_{-\infty}^{\infty}e^{-a(x-\frac{b}{2a})}\;
    [parallel displacement]
    =\sqrt{\frac{\pi}{a}}e^{\frac{b^2}{4a}+c}

19. ガウス積分 (G):


  • \cases{x=r\cos\theta \\y=\sin\theta}
  • Jacobian:
    \pmatrix{\frac{\partial x}{\partial r} &\frac{\partial x}{\partial\theta} \\\frac{\partial y}{\partial r} &\frac{\partial y}{\partial\theta}} =\pmatrix{\cos\theta&-r\sin\theta \\\sin\theta&r\cos\theta}

>Top 20. l'Hôpital's rule (Ô):

  • Average-Value theorem:
    • If f(x) is continuous over the interval [a,b] then:
      ^\exists c\in(a,b)\;\text{such that}\; f(c) =\frac{1}{b-a}\int_{a}^{b}f(x)dx\;[average, or mean value: there exists a point c such that f(c) equals to the averge of f(x)]

  • l'Hôpital's rule (or Bernoulli's rule):
    • Let L be an open interval containing c (for two-sided limit or one-sided limit if c is infinite).
    • the real valued function f,\;g are asumed continuous and differentiable on an open interval I except at c, and additionally g'(x)≠0 on I except at c.
    • if it is assumed that \;lim_{x\to c}\frac{f'(x)}{g'(x)}=L;
      this rule is applied to the ratio of L if it has a finite or infinite limit, but not to the ratio fluctuating permanently.
      • If either \displaystyle\lim_{x\to c}f(x)=\lim_{x\to c}g(x)=0\; [\frac{0}{0}]
        , or \;\;\;\displaystyle\lim_{x\to c}|f(x)|=\lim_{x\to c}|g(x)|=\infty,
        then \;\displaystyle\lim_{x\to c}\frac{f(x)}{g(x)}=L\; [\frac{\infty}{\infty}]

  • Sample:
    1. \frac{x+\sin x}{x}, where c=±\infty, then,
      • \frac{f'(x)}{g'(x)}=\frac{1+\cos x}{1}\;[\cos x oscillates]
      • But the origianl function can be:
        \lim_{x\to\infty}\frac{f(x)}{g(x)} =\lim_{x\to\infty}\bigl(1+\frac{\sin x}{x}\bigr)=1
    2. \lim_{x\to 0}\frac{e^x-1}{x^2+x}
      =\lim_{x\to 0}\frac{\frac{d}{dx}(e^x-1)}{\frac{d}{dx}(x^2+x)} =\lim_{x\to 0}\frac{e^x}{2x+1}=1
    3. \lim_{x\to\infty}\frac{x^n}{e^x}
      =\lim_{x\to\infty}\frac{nx^{n-1}}{e^x} =n\lim_{x\to\infty}\frac{x^{n-1}}{e^x}\cdots
      when l'Hôpital's rule repeats, the exponent will be zero: thus the limit will be zero.
    4. \lim_{x\to 0}\frac{e^x-e^{-1}}{x}=\lim_{x\to 0}\frac{e^x+e^{-1}}{1}=2
    5. \lim_{x\to\infty}\frac{x^2}{e^{2x}}=\lim_{x\to\infty}\frac{2x}{2e^{2x}} =\lim_{x\to\infty}\frac{2}{4e^{2x}}=0
    6. \lim_{x\to +0}x^2\ln x=\lim_{x\to +0}\frac{\ln x}{\frac{1}{x^2}} =\lim_{x\to +0}\frac{\frac{1}{x}}{-\frac{2}{x^3}} =\lim_{x\to +0}(-\frac{1}{2}x^2)=0

20. ロピタルの定理 (Ô):

  • set difference: 差集合 \
  • extented real number: 拡大実数
  • one-sidede limit: 片側極限
  • c, L を拡大実数であり、
    以下条件が満たされるとする。
    \displaystyle\lim_{x\to c}f(x) =\lim_{x\to c}g(x)=0
    \displaystyle\lim_{x\to c}f(x) =\pm\lim_{x\to c}g(x)=\pm\infty
  • ある開区間からcを除いた点で
    g'(x)≠0
  • ここで\displaystyle\lim_{x\to c} \frac{f'(x)}{g'(x)}=L
    が存在すれば
  • \displaystyle\lim_{x\to c} \frac{f(x)}{g(x)}=Lである。
    なお、片側極限でもよい。

  • \displaystyle\lim_{x\to\infty} \frac{a^x}{x^r}=\infty
  • \displaystyle\lim_{x\to\infty} \frac{x^r}{\ln x}=\infty

>Top 21. Last boss integral:

  • 100th question of the interal by Yobinori:
    1. I=\int_{0}^{\frac{\pi}{4}}\sqrt{\tan x}dx
      • let t=\sqrt{\tan x}t^2=\tan x2tdt=\frac{1}{\cos^2x}dx
        dx=2t\cos^2xdt=\frac{2t}{1+\tan^2x}dt=\frac{2t}{1+t^4}dt
      • integral range: x:0→\frac{\pi}{4};\; t:0→1
      • I=\int_{0}^{1}\frac{2t^2}{1+t^4}dt
      • where, t^4+1=(t^2+1)^2-2t=(t^2+\sqrt{2}+1)(t^2-\sqrt{2}+1)=P
      • where, \frac{2t^2}{P}=\frac{At+B}{t^2+\sqrt{2}t+1} +\frac{Ct+D}{(t^2-\sqrt{2}t+1)}
        A=-\frac{1}{\sqrt{2}}; B=0; C=\frac{1}{\sqrt{2}}; D=0
      • thus, I=\frac{1}{\sqrt{2}}\{\int_{0}^{1}\frac{t}{t^2-\sqrt{2}t+1}dt -\int_{0}^{1}\frac{t}{t^2+\sqrt{2}t+1}dt\} =\frac{1}{\sqrt{2}}\{I_1-I_2\}
      • where, I_1=\frac{1}{2}\{\int_{0}^{1}\frac{(t^2-\sqrt{2}t+1)' +\sqrt{2}}{t^2-\sqrt{2}t+1}dt\} =\frac{1}{2}\{\int_{0}^{1}\frac{(t^2-\sqrt{2}t+1)'}{t^2-\sqrt{2}t+1}dt +\int_{0}^{1}\frac{\sqrt{2}}{t^2-\sqrt{2}t+1}dt\}
        • where, \frac{\sqrt{2}}{t^2-\sqrt{2}t+1} =\frac{\sqrt{2}}{(t-\frac{1}{\sqrt{2}})^2+\frac{1}{2}}
        • let, t-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}\tan\theta\;→dt =\frac{1}{\sqrt{2}}\frac{1}{\cos^2\theta}d\theta
          t: 0→1;\;\theta: -\frac{\pi}{4}→\alpha such that \;\tan\alpha =\sqrt{2}-1\;(0<\alpha<\frac{\pi}{2})
        • I_1=\frac{1}{2}\bigl\{\bigl[\ln |t^2-\sqrt{2}t+1|\bigr]_0^1 +2\int_{-\frac{\pi}{4}}^{\alpha}\frac{\sqrt{2}}{\tan^2\theta+1} \frac{1}{\sqrt{2}\cos^2\theta}d\theta\bigr\}\\ =\frac{1}{2}\bigl\{\ln (2-\sqrt{2})+2\int_{-\frac{\pi}{4}}^ {\alpha}d\theta\bigr\} =\frac{1}{2}\ln(2-\sqrt{2})+\alpha+\frac{\pi}{4}
      • where, I_2=\frac{1}{2}\{\int_{0}^{1}\frac{(t^2+\sqrt{2}t+1)' -\sqrt{2}}{t^2+\sqrt{2}t+1}dt\} =\frac{1}{2}\{\int_{0}^{1}\frac{(t^2+\sqrt{2}t+1)'}{t^2+\sqrt{2}t+1}dt -\int_{0}^{1}\frac{\sqrt{2}}{t^2+\sqrt{2}t+1}dt\}
        • I_2= \frac{1}{2}\bigl\{\bigl[\ln |t^2+\sqrt{2}t +1|\bigr]_0^1-2\int_{\frac{\pi}{4}}^{\beta}\theta\bigl\} =\frac{1}{2}\ln (2+\sqrt{2})-\beta+\frac{\pi}{4}
        • where, \beta is such that \;\tan\beta=\sqrt{2}+1\;(0<\beta<\frac{\pi}{2})
      • thus, I=\frac{1}{\sqrt{2}}(\frac{1}{2}\ln \frac{2-\sqrt{2}} {2+\sqrt{2}}+\alpha+\beta)
        • where, \tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta} {1-\tan\alpha\tan\beta}=\frac{2\sqrt{2}}{1-1}=\infty
        • →\alpha+\beta=\frac{\pi}{2}
      • then, I=\frac{1}{\sqrt{2}}\bigl(\frac{1}{2}\ln \frac{2-\sqrt{2}}{2+\sqrt{2}} +\alpha+\beta\bigr)=\frac{1}{\sqrt{2}} \{\ln (\sqrt{2}-1)+\frac{\pi}{2}\}
        • where, \frac{2-\sqrt{2}}{2+\sqrt{2}}=\frac{6-2\sqrt{2}}{2};\;3-2\sqrt{2}=(\sqrt{2}-1)^2

21. ラスボス積分:

  1. Tips:
    • ルートを外す:
      \sqrt{\tan x}=tと置く。
      定積分の範囲; dx→dt計算
    • 4乗の因数分解:
      (t^4+1)=(t^2+1)^2-2t
    • 部分分数分解:
    • \tan xへの置換:
      \frac{1}{x^2+a^2}のパターンは
      x=a\tan\thetaと置く
    • 長い式は
      I=I_1+I=2
      I_1=I_{11}+I_{12}と分割計算
    • 定積分の範囲変換:
      確定値が出ない場合はsuch that方式:
      \alpha such that \;\tan\alpha=
      遠く。→後の期待
    • 三角関数の公式:
      \tan(\alpha+\beta)=\frac{\tan\alpha+\tan\beta} {1-\tan\alpha\tan\beta}
    • \frac{\pi}{2}\tan\theta→\infty
    • 微分接触型関数の積分:
      \int f^af'dx=\frac{f^{a+1}}{a+1}+C
    • 二重根号の外し方:
      \sqrt{a+b\pm 2\sqrt{ab}}=\sqrt{a}\pm \sqrt{b}

>Top 22. xxxx:

22. xxxx:

Comment
  • In some high schools, there seems a hobby club named 'integral solution club'; I would have participated such a club if it had existed such a club in my old high school.
  • Solution of integrals resembles a kind of game, which is useful in activating one's aging brain during staying home.
  • 一部の高校には'積分クラブ'があるらしい。もしかつての私の高校にそのようなクラブがあれば、きっと参加したのに。
  • 積分の解法は一種のゲームに似ている。それは自宅で引きこもりの老頭の活性化に役立つ。

| Top | Home | Article | Bookshelf | Keyword | Author | Oxymoron |