Memorandum of Mathematical Physics
Cat: SCI
Pub: 2011
#2010
Takumi (of Yobinori)
20625u
Original resume
Remarks
>Top 0. Preface:
- LaTex is convenient in writing of mathematical expression, though it need some kind of patience.
0. 序文:
>Top 1. Equation of motion (EOM):
- ¶1: Free-fall motion:
- $m\frac{d^2\mathbf{r}}{dt^2}=\mathbf{F}$ [2nd-order LDE]
- $my''=-mg$ [m=mass]
$→\;y'=-gt+C→\;y=-\frac{}{}gt^2+Ct+C'$
$y'(0)=0→\;C=0;\; y(0)=y_0=C'$ [initial condition]
- $\therefore\; \boxed{y(t)=-\frac{1}{2}gt^2+y_0}$
- ¶2: >Top Parabolic motion:
- $\cases{mx''=0\\my''=-mg}$
- $mx''=0→\;x''=0→\;x'=C=v0\cos\theta$
- $x(0)=0→\;C'=0$
- $x=Ct+C'=v_0\cos\theta t\; $ [uniform linear motion]
- $my''=-mg→\;y''=g→\;y'=-gt+C=-gt+v_0\sin\theta$
- $\therefore\;y=-\frac{1}{2}gt^2+v_0\sin\theta t+C'\;$
- $y(0)=0=C'→\; \boxed{y(t)=-\frac{1}{2}gt^2+v_0\sin\theta t}$ [uniform acceleration motion]■
- ¶3: Motion with air resistance:
- $mx''=-kx'$
- let: $x'=v→\;mv'=-kv→\;v'=-\frac{k}{m}v$
- $v(0)=v_0=C→\;v(t)=v_0e{-\frac{k}{m}t}$
- $x'=vv_0e{-\frac{k}{m}t}$
$→\; x=-\frac{k}{m}v_0e^{-\frac{k}{m}t}+C'$
- x(0)=0→\;C'=\frac{m}{k}v_0
- $\therefore\;\boxed{x(t)=\frac{m}{k}v_0(1-e^{-\frac{k}{m}t})}$■
- ¶4: >Top Simple harmonic motion:
- $mx''=-kx$...(*) [k: sprint constant; x: displacement from equilibrium position]
$→\;x''=-\frac{k}{m}x=-\omega^2x;\$ here, $\omega=\sqrt{\frac{m}{k}}$
- assume GS of (*): $x=C_1\sin t+C_2\cos t=C\sin\omega t_1+C_2\cos\omega t$ [linear combination]
- $→\;x=C\sin\omega t_1+C_2\cos\omega t$
- initial condition: $\cases{x(0)=0\\x'(0)=v_0}$
$→\;\cases{C_2=0\\C_1\omega=V_0}$
- $→\;C_1=\frac{v_0}{\omega},\;C_2=0$
- $\therefore\;x(t)=\frac{v_0}{\omega}\sin\omega t$■
- ¶5: Uniform circular motion:
- [$r_0=$raidus, $\;\omega_0$=angular velocity]
- $\mathbf{v}=r'e_r+r\phi'e_{\phi}=0・e_r+r_0\omega_0e_{\phi}=r_0\omega_0e_{\phi}$
- $\mathbf{a}=(r''-r\phi'^2)e_r+(r\phi''+2r'\phi')e_{\phi}=-r_0\omega_0^2e_r
=-\frac{v_0^2}{r_0}2e_r
$
- [using EOM]
$\mathbf{F}=m\mathbf{a}=-mr_0\omega_0^2e_r$ [centripetal]
1. 運動方程式:
- radial direction: 動径方向
- azmuthal direction: 方位角方向 <Ar. as-sumut
- pendulum isochronism: 振り子の等時性
- $\mathbf{r}(x)$: trace of position:
- to know $\mathbf{r}(t)$ by integration
- ¶3.
- Harmonic Motion:
- Polar coordinate system:
$\cases{e_r'=\phi'e_r\\
e_{\phi}'=-\phi'e_r}$
- <Rec. cord.>
$\cases{\mathbf{r}=xe_x+ye_y
\\\mathbf{v}=x'e_x+y'e_y
\\\mathbf{a}=x''e_x+y''e_y}$
- <Por. cord.>
$\cases{\mathbf{r}=re_r
\\\mathbf{v}=r'e_r+r\phi'e_{\phi}
\\\mathbf{a}=(r''-r\phi'^2)e_r\\
+(r\phi''+2r'\phi')e_{\phi}}
$
- Taylor expansion:
$\sin x=x-\frac{x^3}{3!}
+\frac{x^5}{5!}-\dots
>Top 2. Pendulum isochronism:
- Single pendulum: [$|\phi|<<1$]
- [azmuth direction of EOM]
- $m(r\phi''+2r'\phi')=-mg\sin\phi=ml$ [m=mass; l=length of pendulum]
$ml\phi''=-mg\sin\phi$...(*)
$→\;\phi''=-\frac{g}{l}\sin\phi\;$ [$\sin\phi\simeq\phi$]
$→\;\phi''=-\frac{g}{l}\phi$
let: $\omega=\sqrt{\frac{g}{l}}:$
$→\;\phi''=-\omega^2\phi$ [=uniform circular motion]
- let: $\phi(t)=C_1\sin\omega t+C_2\cos\omega t$
here: $\phi(0)=\phi_0,\;\phi'=o\;$ [initial condition]
$→\;C_2=\phi_0,\;C_1\omega=0→\;C_1=0,\; C_2=\phi_0$ [$\omega≠0$]
$\therefore\;\phi(t)=\phi_0\cos\omega t$■
- here: $T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{l}{g}}\;[T=$period]
- Exact solution of single pendulum:
- multiply $\phi':\; \phi''\phi'+\frac{g}{l}\phi'\sin\phi=0$
$→\;\frac{d}{dt}(\frac{1}{2}\phi^2-\frac{g}{l}\cos\phi)=0$
$→\;\frac{1}{2}\phi^2-\frac{g}{l}\cos\phi=E\;$ [E=constant; mechanical energy]
- when: $\theta=\theta_0,→\;\theta'=0$
$→\;E=-\frac{g}{l}\cos\theta_0$
$→\;\frac{1}{2}\phi'^2-\frac{g}{l}(\cos\phi-\cos\phi_0)$
$→\;\phi'^2=\frac{2g}{l}(\cos\phi-\cos\phi_0)$
here: $\phi'=-\sqrt{\frac{2g}{l}(\cos\phi-\cos\phi_0)}\;[0≤\phi≤\phi_0]$
- $T=4\int_0^\frac{T}{4}dt=4\displaystyle\int_{\phi_0}^0
\frac{1}{-\sqrt{\frac{2g}{l}(\cos\phi-\cos\phi_0)}}d\phi$
$=2\sqrt{\frac{2l}{g}}\displaystyle\int_0^{\phi_0}\frac{1}{\sqrt{\cos\phi-\cos\phi_0}}d\phi$
- change of variables: $\theta$ such that $\sin\frac{\phi}{2}
=\sin\frac{\phi_0}{2}\sin\theta$
$→\;T=4\sqrt{\frac{l}{g}}\displaystyle\int_0^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{1-\sin^2\frac{\phi_0}{2}\sin^2\theta}}$
- substitute to: $\sin (\frac{\phi_0}{2})=a$
$T=\frac{4}{\omega}\displaystyle\int_0^{\frac{\pi}{2}}\frac{d\theta}{\sqrt{1-a^2\sin^2\theta}}=\frac{4}{\omega}K(a)\; [K:$complete elliptic integral 1st]$*\tiny{1}$
2. 振り子の等時性:
- complete elliptic integral of the 1st kind: 第1種完全楕円積分
- $*\tiny1\;$第1種完全楕円積分:
- $F(x,k)=\displaystyle\int_0^x
\frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$
- $F(x,0)=\displaystyle\int_0^x
\frac{1}{\sqrt{1-t^2}}dt=\sin^{-1}x$
- $F(x,1)=\displaystyle\int_0^x
\frac{1}{1-t^2}dt=\tanh^{-1}x$
= >Top 3. Conservation law:
- Momentum conservation law:
- $m\frac{d^2\mathbf{r}}{dt^2}=\mathbf{F}$
- $\mathbf{P}=m\frac{d\mathbf{r}}{dt}$\; [P=momentum]
$→\;\frac{d\mathbf{p}}{dt}=\mathbf{F}
→\;\mathbf{P}(t_2)-\mathbf{P}(t_1)=\int_{t_1}^{t_2}\mathbf{F}(t)dt$
$\mathbf{P}(t_2)-\mathbf{P}(t_1)=\mathbf{I}\;$ [I=impulse=change of momentum]
- when $\mathbf{I}=0:→\;\mathbf{P}(t_2)=\mathbf{P}(t_1)\;$ [conservation of momentum]
- Energy conservation law:
- $W=F\cos\theta・s=\mathbf{FS}\;$[Inner vector: W=work is constant]
- $dW=\mathbf{F}・d\mathbf{r}$ [W is changeable]
$→\;W=\int_c\mathbf{F}・d\mathbf{r}$
- conservative force: $W=\int_{\mathbf{r}_0}^{\mathbf{r}}\mathbf{F}・d\mathbf{r}$
- potential energy: $U(\mathbf{r})=
-\int_{\mathbf{r}_0}^\mathbf{r} \mathbf{F}d\mathbf{r}$
- Kinetic energy:
- $k=\frac{1}{2}m|\mathbf{v}|^2=\frac{1}{2}m(v_x^2+v_y^2+v_z^2)$
$→\;\frac{dk}{dt}=m\mathbf{v}・\frac{d\mathbf{v}}{dt}$
- $\mathbf{v}=\frac{d\mathbf{r}}{dt},\;m\frac{d\mathbf{v}}{dt}=\mathbf{F}
→\;\frac{dk}{dt}=\mathbf{F}・\frac{dr}{dt}$
$→\;\int_{t_1}^{t_2}\frac{dk}{dt}dt=\int_{t_1}^{t_2}
\mathbf{F}\frac{d\mathbf{r}}{dt}dt$
$k(t_2)-k(t_1)=\int_c\mathbf{F}d\mathbf{r}$
- $\therefore\; \Delta k=W$
- energy conservation law: $k(t_2)-k(t_1)=\int_c\mathbf{F}d\mathbf{r}$
- $ [F$=conservative force]:
$\int_c\mathbf{F}d\mathbf{r}
=\int_{\mathbf{r}_1}^{\mathbf{r}_2}\mathbf{F}d\mathbf{r}
=\int_{\mathbf{r}_0}^{\mathbf{r}_2}\mathbf{F}d\mathbf{r}
-\int_{\mathbf{r}_0}^{\mathbf{r}_1}\mathbf{F}d\mathbf{r}
=-U(\mathbf{r}_2)+U(\mathbf{r}_1)
$
- mechanical energy:
$k(t_2)-k(t_1)=-U(\mathbf{r}_2)+U(\mathbf{r}_1)$
$\therefore\;k(t_2)+U(\mathbf{r}_2)=k(t_1)+U(\mathbf{r}_1)$
- If $\mathbf{F}$ is conservative force, the potential energy is defined as:
$U(\mathbf{r})=-\int_{\mathbf{r}_0}^{\mathbf{r}}\mathbf{F}\mathbf{r}$...(*)
then, $U(r')-U(r)=-\int_{r_0}^{r'}Fdr-(-\int_{r_0}^{r}Fdr
=
-(\int_{r}^{r_0}Fdr+\int_{r_0}^{r'}Fdr)=-\int_{r}^{r'}Fdr$
- thus, conservative force: $W=-\Delta U$
- ¶1: Potential energy & Force [1 dimension]:
- $U(x)=-\int_{x_0}^{x}F(x)dx$
- $U(x+\Delta x)-U(x)=-\int_{x}^{x+\Delta x}F(x)dx\simeq -F(x)\Delta x$
$→\;F(x)=-\displaystyle\lim_{\Delta x\to 0}
\frac{U(x+\Delta x)-U(x)}{\Delta x}=-\frac{U(x)}{dx}$
- ¶2: Potential energy & Force [3D]
- $U(\mathbf{r})=-\int_{\mathbf{r}_0}^{\mathbf{r}}\mathbf{F}(\mathbf{r})d\mathbf{r}$
- $U(x+\Delta x, y+\Delta y, z+\Delta z)-U(x, y, z)\simeq -(F_x\Delta x+F_y\Delta y +F_z\Delta z)$
- when: $\Delta y=\Delta z=0$
$→\;U(x;\Delta x, y, z)-U(x, y, z)\simeq -F_x\Delta x$
$\therefore\; F_x=-\displaystyle\lim_{\Delta x\to 0}\frac{U(x;\Delta x, y, z)-U(x, y, z)}{\Delta x}$
- thus: $\cases{F_x=-\frac{\partial U(\mathbf{r})}{\partial x}\\F_y=-\frac{\partial U(\mathbf{r})}{\partial y}\\F_z=-\frac{\partial U(\mathbf{r})}{\partial z}}$
- $\therefore\; \mathbf{F}(\mathbf{r})=\bigl(-\frac{\partial U(\mathbf{r})}{\partial x},\;-\frac{\partial U(\mathbf{r})}{\partial y},\;-\frac{\partial U(\mathbf{r})}{\partial z}\bigr)=-\bigl(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\bigr)U(r)=-\nabla U(\mathbf{r})$
- ¶3: Harmonic oscillation (2D):
- $U(x,y)=\frac{1}{2}k(x^2+y^2)$
$F_x=\frac{\partial (x,y))}{\partial x}=-kx$
$F_y=\frac{\partial (x,y))}{\partial y}=-ky$
$→\;\mathbf{F}(\mathbf{r})=-k(x,y)=-k\mathbf{r}$
- $\nabla=(\frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z})→\;\nabla\times \mathbf{F}=\mathbf{0}$
3. 保存則:
- momentum: 運動量
- impulse: 力積
- inner product/vector product: 内積/外積
- conservative force: 保存力
- gradient: 勾配
- harmonic oscillator: 調和振動子 =spring
- integration by substitution: 置換積分
- Harmonic oscillator:
- >Top Vector product:
$a\times b=\\
(a_yb_z-a_zb_y,
\\
a_zb_x-a_xb_z, \\
a_xb_y-a_yb_x
)$
>Top 4. Damped oscillation:
- Damping oscillation:
- $mx''=-kx-bx'\;$ [k=spring constant; b=damping coefficient]
$→\; x''=-\omega_0^2x-2\gamma x'\; [\omega_0=\sqrt{\frac{k}{m}},; \gamma=\frac{b}{2m}]$...(*)
- assume:$x=e^{\lambda t}=-\omega_0^2e^{\lambda t}$
$→\;\lambda+2\gamma\lambda+\omega_0^2=0$
$→\;\lambda_{±}=-\omega±\sqrt{\gamma^2-\omega_0^2} [\lambda$ is -real number]
- 1) when: $\gamma>\omega_0:\;$ [over-damped]
assume GS of (*) is $x=C_1e^{\lambda+t}+C_2e^{\lambda-t}$
here: $x(0)=a,\; x'(0)=0$ [exponentially damped]
- 2) when: $\gamma<\omega_0:\;$
$\lambda_{±}=-\gamma±\sqrt{\gamma^2-\omega_0^2}=-\gamma±i\sqrt{\omega_0^2-\gamma^2}=-\gamma±i\omega$
assume GS of (*) is $x=C_1e^{-\gamma+iw)t}+C_2e^{-\gamma-iw)t}$
$=e^{-\gamma t}(C_1e^{i\omega t}+C_2e^{-i\omega t})
$
$=e^{-\gamma t}\bigl((C_1+C_2)\cos\omega t+i(C_1-C_2)\sin\omega t\bigr)$
$=
e^{-\gamma t}(A\cos\omega t+iB\sin\omega t)
=Ce^{-\omega t\cos(\omega t+\phi)};\;$
$
[C=\sqrt{A^2+B^2},\; \tan\phi=-\frac{B}{A}]$
- 3) when: $\gamma=\omega_0$
$\lambda_+=\lambda_-=-\lambda$
- >Top assume GS of (*) is $x=C(t)e^{-\gamma t}$
then, $→\;x'=C'e^{-\gamma t}-C(\gamma e{-\gamma t})$
$x''=C''e^{-\gamma t}-2C'(\gamma e^{-\gamma t})+C(\gamma^2 e^{-\gamma t})$
substitute to (*):
$C''e{-\gamma t}-2\gamma C'e{-\gamma t}+\gamma^2Ce{-\gamma t}
=-\omega_0^2Ce{-\gamma t}+2\gamma^2e{-\gamma t}-2\gamma C'e{-\gamma t}
$
$C''+C(\omega^2-\gamma^2)=0\; [e^{-\gamma t}≠0]$
$→\;C''=0 \; [\omega_0^2-\gamma^2=0]$
$→\;C=At+B \therefore\; x=(At+B)e^{-\gamma t} \; $[critical damping]
- Energetic consideration:
$mx''=-kx-bx'$
$→\;mx''x'=akx'x-bx'^2$
$→\;\frac{d}{dt}(\frac{1}{2}mv^2+\frac{1}{2}kx^2)=-bv^2<0$ [mechanical energy]
$-bv^2→\;-bv\frac{dx}{dt}\;$ [work efficient]
- >Top Forced oscillation:
$mx''=-kx+F\cos\omega t$
$x''=-w_0^2x+f\cos\omega t$...(*) [$w_0=\sqrt{\frac{k}{m}},\; f=\frac{F}{m}$]
- assume SS of (*): $x=a\cos\omega t$
- substitute to (*): $-a\omega^2\cos\omega t
=-a\omega_0^2\cos\omega t+f\cos\omega t$
$→\;a=-\frac{f}{\omega^2-\omega_0^2}$
SS of (*) is $x=-\frac{f}{\omega^2-\omega_0^2}\cos\omega t$ [resonance]
- GS of (*)=GS of homo.eq + SS of (*)
assume GS of (*): $x=A\sin\omega_0 t+B\cos\omega_0 t
-\frac{f}{\omega^2-\omega_0^2}\cos\omega t$
- consider: $\omega →\omega_0; \;$initial condition: $x(0)=0,\; x'(0)=0$
$→\;a=0,\; B=\frac{f}{\omega^2-\omega_0^2}$
$→\;x=\frac{f}{\omega^2-\omega_0^2}(\cos\omega_0 t-\cos\omega t)$
$→\;x=-\frac{2f}{(\omega+\omega_0)(\omega-\omega_0)}$
$\sin\frac{\omega_0+\omega}{2}t\sin\frac{\omega_0-\omega}{2}t$
- here: $\omega_0-\omega=\Delta\omega$
$x=\frac{2f}{\omega_0+\omega}\sin\frac{\omega_0+\omega}{2}t
\frac{t}{2}\frac{\sin \frac{\Delta\omega}{2}t}{\frac{\Delta\omega}{2}t}$
$\Delta\omega→0\; x=\frac{ft}{2\omega_0}\sin\omega_0t$ [increasing ]
4. 減衰振動:
- damped oscillation/vibration: 減衰振動
- damping coefficient:
- over-damped: 過減衰
- critical damping: 臨界減衰
- restoring force: 復元力
- external force: 外力
- forced oscillation: 強制振動
- resonance: 共振・共鳴
- Euler's formula:
$e^{i\theta}=\cos\theta+i\sin\theta$
- Damping oscillation:
-
- Critical damping:
- $\displaystyle\lim_{x\to 0}
\frac{\sin x}{x}=1$
- Forced oscillation:
>Top 5. Conservation law of angular momentum:
- moment of force (torque):
- $\mathbf{N}=\mathbf{r}\times \mathbf{F} [\mathbf{r}=$distance from the origin]
- conservation of angular momentum:
$L=r\times p [L$=angular momentum; $p$=momentum]...(*)
- differentiate (*): $\frac{d\mathbf{L}}{dt}=\frac{dr}{dt}\times p+r\times \frac{dp}{dt}
=v\times mv+r\times F$ here $[\frac{dr}{dt}=v,\;\frac{p}{dt}=F]
- $\therefore\; \frac{d\mathbf{L}}{dt}=\mathbf{N}\; [N$=torque]
thus, when $F\parallel r, \; N=0$
$\frac{d\mathbf{L}}{dt}=\mathbf{0}→\;\mathbf{L}=C \;$ [conservation of angular momentum]
- Law of constant area velocity:
- $\Delta S=\frac{1}{2}rv\Delta t\sin\phi$
$→\;\frac{\Delta S}{\Delta t}=\frac{1}{2}rv\sin\phi$...(*)
- while: angular momentum of planetary movement:
$L=rmv\sin\phi \;[L$=angular momentum]...(**)
$L=2m\frac{\Delta S}{\Delta t};\; [\frac{\Delta S}{\Delta t}$=area velocity]
→\;[constant area velocity is one of law of constant angular momentum]
5. 角運動量保存則:
- angular momentum: 角運動量
- moment of force: 力のモーメント
- 外積の微分:
- $\frac{d}{dt}(\mathbf{a}\times\mathbf{b})
=\frac{d\mathbf{a}}{dt}\times\mathbf{b}
+\mathbf{a}\times\frac{d\mathbf{b}}{dt}$
- Constant area velocity: $\Delta S=v\Delta t\sin\phi$
>Top 6. Inertial Frame:
- Inertial/Noninertial frame:
- $\mathbf{r}=\mathbf{R}+\mathbf{r}_0$
substitute to $mr''=F$:
$m(R''+r_0'')=F→\;mr_0''=F-mR''$...(*)
- when, $O_0$ is $R=Vt\; $ [uniform linear motion]
$→\; R'=V, \; R''=0$
substitute to (*): $mr_0''=F→\;S_0 $ is inertial frame.
- right side of (*) $F-mR''$ looks like a kind of force: [inertial force]
- >Top Equivalence principle:
- $\mathbf{F}_g=m_g\mathbf{g}\; [m_g$=gravitational mass]
- while: $m_i\mathbf{a}=\mathbf{F}\; [m_i$=inertial mass]
- in only gravitational field: $m_i\mathbf{a}=m_g\mathbf{g}
→\;\mathbf{a}=\frac{m_g}{m_i}\mathbf{g}$
regardless of any object: $\mathbf{a}=\mathbf{g}→\;m_g=m_i$ [equivalence principle]
6. 慣性系:
- noninertial frame: 非慣性系
- uniform linear motion: 等速直線運動
- equivalence principle: 等価原理
- Inertial frame:
-
>Top 7. Coriolis Force:
- Rotating coordinate system:
- $\mathbf{r}=x_o\mathbf{e}_{ox}+y_o\mathbf{e}_{oy}
=x\mathbf{e}_x+y\mathbf{e}_y$...(*)
here: $\cases{e_x=\cos\omega t e_{ox}+\sin\omega t e_{oy}
\\e_y=-\sin\omega t e_{ox}+\cos\omega t e_{oy}}$
$→\cases{e'_x=-\omega\sin\omega t e_{ox}+\omega\cos\omega t e_{oy}
=\omega e_y
\\e'_y=-\omega\cos\omega t e_{ox}-\omega\sin\omega t e_{oy}
=-\omega e_x}$
$→\cases{e''_x=-\omega^2e_x\\e''_y=-\omega^2e_y}$
- here EOM of (*): $F=mr''$
$→\;r''=x''e_x+y''e_y+2(x'e_x'+y'e_y')+xe_x''+ye_y''$
$→\;=x''e_x+y''e_y+2\omega(x'e_y-y'e_x)-\omega^2(xe_x+ye_y)$
- substitute to (*)$mr''=F+m\omega^2r+2m\omega(y'e_x-x'e_y)
$
- here: $m\omega (y'e_x-x'e_y)
=2m\omega \mathbf{v}\times e_z\;$ [Coriolis force]
7. コリオリの力:
- Coriolis force: コリオリの力
- apparent force: 見かけの力
- centrifugal force: 遠心力
- $\cases{v=(x',y',z')\\e_z=(0,0,1)}$
$→\;v\times e_z=(y'-x')$
>Top 8. Archimedean spiral:
- Length in polar coordinates:
- $dL=\sqrt{(rd\theta)^2+(dr)^2}$...(*1)
$→\;=\sqrt{r^2+(\frac{dr}{d\theta})^2}d\theta\;[r=f(\theta)]$
- from (*1):
- $L=\displaystyle\int_0^{\pi}\sqrt{r^2+(\frac{dr}{d\theta})^2}d\theta$
$→\;=\displaystyle\int_0^{\pi}\sqrt{\theta^2+1}d\theta$
- let $\theta=\sinh t→\;d\theta=\cosh tdt$
$L=\displaystyle\int_{0}^T \sqrt{\sinh^2t+1}\cosh tdt$
$=\int_{0}^{T}\cosh^2tdt=\int_{0}^{T}\frac{1+\cosh 2t}{2}dt$
$=\frac{1}{2}\left[t+\frac{1}{2}\sinh 2t\right]_0^T$
$=\frac{1}{2}T+\frac{1}{4}\sinh2T$
$=\frac{1}{2}T+\frac{1}{2}\sinh T\cosh T$
$=\frac{1}{2}\log(\pi+\sqrt{\pi^2+1})+\frac{1}{2}\pi\sqrt{\pi^2+1}\simeq 6.1099$
- Re:
- $\theta=\frac{e^t-e^{-1}}{2}→\;(e^t)2-2\theta e^t-1=0$
$→\;e^t=\theta+\sqrt{\theta^2+1}→\;t=\log (\theta+\sqrt{\theta^2+1})$
- $\begin{array}{c|l}\theta&0→\pi\\ \hline t&0→\log(\pi+\sqrt{\pi^2+1})=T\end{array}$
- $\sinh T=\pi\; [←\theta~\sinh t]$
- $\cosh T=\sqrt{\sinh^2T+1}=\sqrt{\pi^2+1}$
8. アルキメデスの螺旋:
>Top 9. Hyperbolic function:
- Hyperbolic function:
- $\sinh x=\frac{e^x-e^{-1}}{2}$
- $\cosh x=\frac{e^x+e^{-1}}{2}$
- $\tanh x=$
- $(\sinh x)'=\cosh x$
- $\cosh^2 x-\sinh^2 x=1$
- $\cosh^2 x=\frac{1+\cosh 2x}{2}$
- $\sinh 2x=2\sinh x\cosh x$
- comparison:
- $\begin{array}{l|l}\cosh^2x-\sinh^2x=1&\cos^2x+\sin^2x=1\\
\tanh x=\frac{\sinh x}{\cosh x}
&\tan x=\frac{\sin x}{\cos x}\\
1-\tanh^2x=\frac{1}{\cosh^2x}&1+tan^2x=\frac{1}{\cos^2x}\end{array}$
- $\begin{array}{l|l}(\sinh x)'=\cosh x&(\sin x)'=\cos x\\
(\cosh x)'
=\sinh x&(\cos x)'=-\sin x\\
(\tanh x)'=\frac{1}{\cosh^2x}&(\tan x)'=\frac{1}{\cos^2x}\end{array}$
- $\begin{array}{l|l}\sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y
&\sin(x+y)=\sin x\cos y+\cos x\sin y \end{array}$
- parametric:
- $x=\cosh\theta,\;y=\sinh\theta→\;x^2-y^2=1\;$ [hyperbola]
- cf: $x=\cos\theta,\;y=\sin\theta→\;x^2+y^2=1$ [circle]
- Euler's formula:
- $e^{i\theta}=\cos\theta+i\sin\theta$
- $→\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}$
$→\sin\theta=\frac{e^{i\theta}-e^{-i\theta}}{2i}$
9. 双曲線関数:
- hyperbolic function: 双曲線関数
- catenary: 懸垂線
>Top 10. Inverse trigonometric function:
- $y=\arcsin x\; [-1≤x≤1,\;-\frac{\pi}{2}≤y≤\frac{\pi}{2}]$
- $x=\sin y→\;\frac{dx}{dy}=\cos y=\sqrt{1-\sin^2 y}$
$→\;\frac{dy}{dx}=\frac{1}{\sqrt{1-\sin^2 y}}=\frac{1}{\sqrt{1-x^2}}$
- $y=\arccos x\;[-1≤x≤1,\;0≤y≤\pi]$
- $x=\cos y→\;\frac{dx}{dy}=-\sin y=-\sqrt{1-\cos^2 y}$
$→\;\frac{dy}{dx}=-\frac{1}{\sqrt{1-\cos^2 y}}=-\frac{1}{\sqrt{1-x^2}}$
- $y=\arctan x\; [-\infty≤x≤\infty,\;-\frac{\pi}{2}≤y≤\frac{\pi}{2}]$
- $x=\tan y→\;\frac{dx}{dy}=\frac{1}{\cos^2y}=1+\tan^2y$
$→\;\frac{dy}{dx}=\frac{1}{1+\tan^2 y}=\frac{1}{1+x^2}$
10: 逆三角関数:
>Top 11. Two-particle system motion:
- EOM:
- $m_1\mathbf{r}_1''=\mathbf{F}_1+\mathbf{F}_{12}$...(1)
- $m_2\mathbf{r}_2''=\mathbf{F}_2+\mathbf{F}_{21}$...(2)
- (1)+(2): $m_1r_1''+m_2r_2''=F_1+F_2$
here: $r_G=\frac{m_1r_1+m_2r_2}{m_1+m_2}=\frac{m_1r_1+m_2r_2}{M}$
[G=center of gravity; M=total mass]
$→\;Mr_G''=F_1+F_2$ [external force only]
- >Top relative vector: $r=r_2-r_1$ [viewpoint from $r_1$]
- $r''=r_2''-r_1''=\frac{F_2+F_{21}}{m_2}-\frac{F_1+F_{12}}{m_1}
=(\frac{1}{m_1}+\frac{1}{m_2})F_{21}+\frac{F_2}{m_2}-\frac{F_1}{m_1}$
$=\frac{1}{\mu}+\frac{F_2}{m_2}+\frac{F_1}{m_1}$
$ [\mu:\;$ reduced mass]
- $→\;\mu r''=F_{21}+\frac{\mu}{m_2}F_2-\frac{\mu}{m_1}F_1$
$→\;\mu r''=F_{21}\;$ [unless external force]
- Motion of connected objects: (>Fig.)
- motion of center of gravity: $Mx_G''=0\;$ [constant linear motion]
- relative motion: $\mu x''=-k(x_2-x_1-l)$ [$\mu:$ reduced mass]
here: $\omega=\sqrt{\frac{k}{\mu}}\;$ [simple oscillation]
- Total momentum:
- $P=p_1+p_2=m_1r_1'+m_2r_2'$
- $P'=m_1r_1''+m_2r_2''=F_1+F_2$
$→\;P'=0→\;P=C\;$ [unless external force]
- Total kinetic energy:
- $K=k_1+k_2=\frac{1}{2}m_1r_1'^2+\frac{1}{2}m_2r_2'^2$...(*)
- here: $\cases{r_G=\frac{m_1r_1+m_2r_2}{M}\\r=r_2-r_1}$
$→\;\cases{r_1=r_G-\frac{m_2}{M}r\\r_2=r_G+\frac{m_1}{M}r}$
- substitute to (*):
$K=\frac{1}{2}m_1(r_g-\frac{m_2}{M}r)^2+\frac{1}{2}m_2(r_g+\frac{m_1}{M})^2$
$→\;=\frac{1}{2}(m_1+m_2)r_G'^2
+\frac{1}{2}\frac{m_1m_2(m_1+m_2)}{M}r'^2$
$→\;=\frac{1}{2}Mr_G'^2+\frac{1}{2}\mu Mr'^2$ [momentum of COG & reduced mass]
- Total angular momentum:
- $L=L_1+L_2=r_1\times p_1+r_2\times p_2=r_1\times m_1r_1'
+r_2\times m_2r_2'$...(*)
- $→\;L'=r_1'\times m_1r_1'+r_1\times m_1r_1''+r_2'\times m_2r_2'+r_2\times m_2r_2''$
$=r_1\times (F1+F_{12})+r_2\times (F_2+F_{21})$
$=(r_2-r_1)\times F_{21}+r_1\times F_1+r_2\times F_2
=r_1\times F_1+r_2\times F_2\;$ [each torque]
- consider COG and substitute to (*):
$L=(r_G-\frac{m_2}{M}r)\times m_1(r_G'-\frac{m_2}{M}r')
+(r_G+\frac{m_1}{M}r)\times m_2(r_G'+\frac{m_2}{M}r')
$
$=m_1r_G\times r_G'-\frac{m_1m_2}{M}r_G\times r'
-\frac{m_1m_2}{M}r\times r_G'+\frac{m_1m_2^2}{M^2}r\times r'$
$+m_2r_G\times
r_G'+\frac{m_1m_2}{M}r_G\times r'
+\frac{m_1m_2}{M}r\times r_G'+\frac{m_1^2m_2}{M^2}r\times r'$
$=r_G\times (m_1+m_2)r_G'+r\times\frac{m_1m_2(m_1+m_2)}{M^2}r'$
- $\therefore\;L=r_G\times Mr_G'+r\times\mu r'\;$ [torque of COG and torque of relative vector]
11. 二粒子系の運動:
- relative vector: 相対位置ベクトル
- reduced mass: 換算質量
- total momentum: 全運動量
- center of gravity: COG
- >Top Commutative law of vector product:
$\mathbf{a}\times
(\mathbf{b}+\mathbf{c})
=\mathbf{a}\times \mathbf{b}
+\mathbf{a}\times \mathbf{c}$
- <Summary>:
- EOM of COG:
- $Mr_G''=F_1+F_2$
- Relative EOM:
- $\mu r''=F_{21}$ [no ex-force]
- Total momentum:
- $P=p_1+p_2$
$P=$constant [without ex-force]
- Total kinetic energy:
- $K=k_1+k_2$
$\frac{1}{2}Mr_G'^2
+\frac{1}{2}\mu r'^2$
- Total angular momentum:
- $L=L_1+L_2$
$=r\times Mr_G'+r\times\mu r'$
- $L'=N_1+N_2$ [torque]
>Top 12. Rigid body dynamics:
- Rigid body: deformation is zero or negligible; the distance between any two point remains constant regardless of external forces exerted; continuous distribution of mass.
- Rigid body of EOM:
- $P_G'=F$ [EOM of COG]
- $L'=N$ [rotation around the axis passing COG]
- EOM of COG:
- $m_ir_i''=f_i+\displaystyle\sum_jFf_{ij}\; [ex-power+in-power;\;i≠j]$
- here; $Mr_G''=\frac{\sum_im_ir_i}{\sum_im_i}\;$ [COG]
- feature: 1) degree of freedom: 3n→6; 2) offset of internal-power
- $Mr_G''=\sum_if_i$
- here: $P_G=Mr_G',\; F=\sum_if_i$
$P_G'=F$
- Rotary motion:
- $P_i'=f_i+\sum_jf_{ij}\; [momentum=exforce + inforce]
$→\;r_i\times P_i'=r_i\times (f_i+\sum_jf_{ij})\;
$r_i\times p_i'=\frac{d}{dt}(r_i\times p_i)$...(*1)
- $\because\; \frac{d}{dt}(r_i\times p_i)=r_i'\times p_i+r_i\times p_i'$...(*2)
here: $r_i'\times p_i=0$ [parallel vector]
- here: $\sum_i\sum_j(r_i\times f_{ij})=\sum_{i>j}(r_i-r_j)\times f_{ij}=0$
- $\because\;$if$\; n=3→\;\sum_i\sum_j(r_i\times f_{ij})$
$=r_1\times f_{12}+r_1\times f_{13}+r_1\times f_{21}
+r_1\times f_{23}+r_1\times f_{31}+r_1\times f_{32} =0$
- from (*2): $\frac{d}{dt}\sum_i(r_i\times p_i)=\sum_i(r_i\times f_i)$...(*3)
from (*3): $L'=\sum_i(r_i\times p_i);\;N=\sum_i(r_i\times f_i)=\;$ [L= angular momentum; N=moment of force]
$\therefore\; \boxed{L'=N}$ [around the origin]
- Relative position from COG:
- here;$r_G=\frac{\sum_im_ir_i}{M};\;r_G'=\frac{\sum_im_ir_i}{M}
=frac{\sum_ip_i}{M}$
- substitute to (*3): $r_i=r_o+r_G$
$→\;\frac{d}{dt}\sum_i((r_{oi}+r_G)\times p_i)=\sum_i((r_{oi}+r_G)\times f_i)$
$→\;\frac{d}{dt}\sum_i(r_{oi}\times p_i)+\frac{d}{dt}\sum_i(r_G\times p_i)
=\sum_i(r_{oi}\times f_i)+\sum_i(r_G\times f_i)$...(*4)
- here: $\frac{d}{dt}\sum_i(r_G\times p_i)=\sum_i(r_G'\times p_i+r_G\times p_i')
=\sum_i(r_G\times p_i')$
- here: $p_i'=f_i+\sum_jf_{ij}=f_i$
- (*4) is: $\frac{d}{dt}\sum_i(r_{oi}\times p_i)=\sum_i(r_{oi}\times f_i)$
- $→\;p_{oi}'=p_i-m_ir_G'$
$→\;\frac{d}{dt}\sum_i(r_i'\times (p_i'+m_ir_G'))=\sum_i(r_{oi}\times f_i)$
$→\;\frac{d}{dt}\sum_i(r_{oi}\times p_{oi}')
+\frac{d}{dt}((\sum_im_ir_{oi})\times r_G')=\sum_i(r_{oi}\times f_i)$
- here: $\sum_im_ir_{oi}=\sum_i(r_i-r_G)=\sum_im_ir_i-r_G\sum_im_i=0$
- here: $L_o=\sum_ir_{oi}\times p_{oi};\; N_o=\sum_i(r_{oi}\times f_i)$
$\therefore\; \boxed{L_o'=N_o}$ [rotary motion around COG]
12. 剛体の力学:
- rigid body: 剛体
- point mass: 質点
- point of application: 作用点
- line of action: 作用線
- degree of freedom: 自由度
- manifold: 多様体
- deformation: 変形
- nonlocal action; action at a distance: 遠隔作用
- roll/yaw/pitch: position of a rigid body
- Rotation around the axis passing COG:
- $\frac{d}{dt}(r_i\times p_i)
=r_i'\times p_i
+r_i\times p_i'
$
here; $r_i'\times p_i=0$
- Relative position:
- 原点:
$L'=N$
- 重心:
$L_o'=N_o$
>Top 13. Inertia moment of rigid body:
- Inertia moment:
- Motion with fixed axis: →degree of freedom is 1.
- $L_z'=N_z$
- here: $L_z=\sum_i(r_i\times p_i)_z=\sum_i(x_iy_i'-y_ix_i')
=\int \rho (r)(xy'-yx')d^3r
$..(*)
- here: $x=r\cos\phi,\; y=r\sin\phi$
$x'=-r\phi'\sin\phi,\; y'=r\phi'\cos\phi$
$→\;xy'-yx'=r^2\phi'\cos^2\phi+r^2\phi'\sin^2\phi=r^2\phi'$
- substiture to (*): $L_z=(\int r^2\rho (r)d^3r)\phi'$
$=I_z\phi'\;$[inertia moment around z-axis]
$\therefore\;\boxed{I_z\phi''=N_z}\;$ [I_z: difficulty of rotation]
- Inertia moment of COG:
- $I=\int r^2\rho(r)d^3r$...(*2)
- >Top Parallel axes theorem:
$I=I_G+Mh^2\;$ [M=total mass; h=distance between axes]
- here: $r_o=r-r_G$
- substitute to (*2): $I=\int r^2\rho(r)d^3r$
$=\int (x^2+y^2)\rho(r)d^3r$
$=((x_o+x_g)^2+(y_o+y_G)^2)\rho(r)d^3r$
$=(x_g^2+y_g^2)\int \rho(r)d^3r+2x_g\int x_o\rho(r)d^3r$
$++2y_g\int y_o\rho(r)d^3r+\int (x_o^2+y_o^2)\rho(r)d^3r$
- here: $\int x_o\rho(r)d^3r=\int(x-x_G)\rho(r)d^3r$
$=\int x\rho(r)d^3r-x_g\int\rho(r)d^3r
=Mx_g-x_gM=0$
- $\therefore\; \boxed{I=I_g+Mh^2}$
- >Top Orthogonal axes theorem:
- $I_z=\in r^2\sigma(r)d^3r=\int (x^2+y^2)\sigma(r)d^2r$
$=\int x^2\sigma(r)d^2r+\int y^2\sigma(r)d^2r=I_y+I_x$
- $\therefore\; \boxed{I_z=I_x+I_y}$
13. 剛体の慣性モーメント:
- inertia moment: 慣性モーメント
- orthogonal axis: 直交軸
- Parallel axis theorem:
- Orthogonal axis:
>Top 14. Mechanical energy of rigid body:
- Kinetic energy of rigid body:
- $\sum_i\frac{1}{2}m_i|r_i'|^2$
$=\sum_i\frac{1}{2}m_i|r_{oi}'+r_G'|^2$
$=\frac{1}{2}\sum_im_i|r_G'|^2+\sum_im_ir_{oi}'r_G'
+\frac{1}{2}\sum_im_i|r_{oi}|^2$
$=\frac{1}{2}|r_g'|^2+r_g(\sum_im_ir_{oi}')+\frac{1}{2}\sum_im_i|r_{oi}|^2$
=translational motion + kinetic energy around COG [$\because \sum_im_ir_{oi}=0$]
- here [motion around fixed axis passing COG]
$\frac{1}{2}\sum_im_i|r_{oi}'|^2=\frac{1}{2}\sum_im_i(r_i\omega)^2$
$=\frac{1}{2}\omega^2\sum_im_ir_i^2=\frac{1}{2}\omega^2\int r^2\rho(r)d^3r$
$=\frac{1}{2}I\omega^2$
- $\therefore\; K=\frac{1}{2}Mv_G^2+\frac{1}{2}I\omega^2$ [translational.e+rotational.e]
- Potential energy of rigid body:
- $\sum_im_igz_i=g\sum_im_iz_i=Mgz_G$
$\therefore\; \boxed{U=Mgh}$ [h=height of COG from the origin]
14. 剛体の力学的エネルギー:
- translational motion: 並進運動
>Top 15. Matrix exponential:
- Proof:
- $e^0=E+0+\frac{1}{2}0^2+\cdots=E$
- $\frac{d}{dt}e^{At}=\frac{d}{dt}(E+At+\frac{1}{2}(At)^2+\cdots)$
$=0+A+A^2t+\frac{1}{2!}A^3t^2+cdots$
$=A(E+At+\frac{1}{2!}A^2+cdots)=Ae^{At}$
- ¶ $\frac{d}{dt}\mathbf{y}(t)=A\mathbf{y}(t)$
- $→\;y(t)=e^{At}y_0\; [y_0=y(0)]$
15. 行列指数関数:
- matrix exponential: 行列乗
- commutative: 可換
- Maclaurin expansion:
$e^x=1+x+\frac{1}{2!}x^2
+\frac{1}{3!}x^3+\cdots
$
$=\displaystyle\sum_{k=0}^{\infty}
\frac{1}{k!}x^k$
- $e^A=\displaystyle\sum_{k=0}^{\infty}
\frac{1}{k!}A^k\;$ [A=square matrix]
- $e^0=E$
- $\frac{d}{dt}e^{At}=Ae^{At}$
- if $AB=BA →e^Ae^B=e^{A+B}$
>Top 16. Chauchy's functional equation:
- definition: $f(x+y)=f(x)+f(y)\;$...(*) [real continuous function]
- is $f(x)=ax\;$ the only function to satisfy (*)?]
- proof:
- when $x=y=0→\;f(0)=f(0)+f(0)→\;f(0)=0\;$ [cross the origin]
- when $y=-x→\;f(0)=f(x)+f(-x)→\;f(x)=-f(x)\;$ [odd function]...(*2)
- when $n$ is natural number, and $x$ is real number, then $f(nx)=nf(x)$
- when $n=1$ is established.
- if n=k is established, then replace $x→kx$ and $y→x$
then,
$f(kx+x)=f(kx)+f(x)=kf(x)+f(x)$
- $\therefore\;f((k+1)x)=(k+1)f(x)$ is established.
- then, any $n$ of natural number: $f(nx)=nf(x)$
- from (*2), substitute: $x→nx$, then $f(-nx)=-f(nx)=-nf(x)\;[-n:$ negative number]
$→\;f(mx)=mf(x)\;$ [m: integer]
- when rational number $r=\frac{m}{n}:$
$→nf(rx)=f(nrx)=f(mx)=mf(x)$
$→f(rx)=\frac{m}{n}f(x)=rf(x)$...(*3)
substitute to (*3): $x=1→\;f(r)=rf(1)$
let $f(1)=a$ then: $f(r)=ar\;[x:$rational number]
- $^\exists \{q_n\}$ such that $^\forall x=\displaystyle\lim_{n\to\infty}q_n=x\; [\{q_n\}:$ rational series] and $f(x)$ is continuous function.
$→f(x)=\displaystyle\lim_{n\to\infty}f(q_n)
=\displaystyle\lim_{x\to\infty}aq_n=ax$
$\therefore\;f(x)=ax$■
- when: $f(x)$ is continuous function, then consider 'rational number' only: [density]
- when $x$ is real number, which is expressed as follows:
$x=m+\displaystyle\sum_{i=1}^{\infty}C_i10^{-i}\; [m, C_i:$ integer, $0≤C_i≤9$]
- rational series: $q_n=m+\displaystyle\sum_{i=1}^nC_i10^{-i}→x (n→\infty)$
16. コーシーの関数方程式:
- real function: 実関数
- mathematical induction: 数学的帰納法
- density: 稠密性
- 数学的帰納法, mathematical induction:
- base case: show f(0) is clearly true.
- inductive step: show for any k≥0, if f(k) holds, then f(k+1) also holds.
>Top 17. Taylor expansion:
- $f(x)=f(a)+f'(a)(x-a)+\frac{1}{2!}f''(a)(x-a)^2+\frac{1}{3!}f'''(a)(x-a)^3+\cdots$...(*)
- where: $h=x-a$, then (*) is:
$f(a+h)=f(a)+f'(a)h+\frac{1}{2!}f''(a)h^2+\frac{1}{3!}f'''(a)h^3+\cdots\;$
[Taylor expansion around $a$]
- where: $a=0=x→\;f(x)=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+\frac{1}{3!}f'''(0)x^3+\cdots$
$=\displaystyle\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$
[Maclaurin expansion]
- ¶1: $f(x)=e^x\; x=0$...(*)
- to find linear function in the vicinity of (*):
$f(0)=1,\; f'(0)=1→\;g(x)=1+x$
- to find quadratic function in the vicinity of (*):
$f(0)=1,\; f'(0)=1,\;f''(0)=1→\; g(x)=1+x+\frac{1}{2}x^2
- $e^x=e^0+e^0x+\frac{1}{2!}e^0x^2+\frac{1}{3!}e^0x^3+\frac{1}{4!}e^0x^4+\cdots$
$=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\frac{1}{4!}x^4+\frac{1}{5!}x^5+\cdots$
$\therefore\;\boxed{e^x=\displaystyle\sum_{n=0}^{\infty}\frac{1}{n!}x^n}$
- $\log (1+x)=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots
=\displaystyle\sum_{n=0}^{infty}\frac{(-1)^n}{n+1}x^{n+1}$
- $f(x)=\log(1+x)→\;f^{(n)}(x)=$
- $\log 2=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\cdots
=\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}=\log 2\;$[Mercator series]
- $(1+x)^n=1+nx+\frac{n(n-1)}{2!}x^2+\frac{n(n-1)(n-2)}{3!}x^3+\cdots$
- $\sin x=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x7+\cdots$
$f(0)=\sin 0=0,\;f'(0)=\cos 0=1,\;f''=-\sin 0=0,\;f'''=-\cos 0=-1, \cdots$
$\sin x=0+1x+\frac{0}{2!}x^2+\frac{1}{3!}x^3+\frac{1}{4!}x^4+\cdots$
$=0+1x+\frac{0}{2!}x^3+\frac{-1}{3!}x^5-\frac{0}{4!}x^6+\cdots$
$=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots$
$\therefore\;\boxed{\sin x=\displaystyle\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}x^{2n+1}}$
- $\cos x=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+\cdots$
$\therefore\;\boxed{\cos x=\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^n}{(2n)!}x^{2n}}$
- $\tan x=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\cdots$
- Euler's formula:
- $i\sin x=ix-i\frac{1}{3!}x^3+i\frac{1}{5!}x^5-i\frac{1}{7!}x^7+\cdots$
$e^{ix}=1+ix-\frac{1}{2!}x^2-i\frac{1}{3!}x^3+\frac{1}{4!}x^4+i\frac{1}{5!}x^5-\cdots$
- $→e^{ix}=\cos x+i\sin x\;$ [Euler' formula]
$→\cos x=\frac{e^{ix}+e^{-ix}}{2},\;\sin x=\frac{e^{ix}-e^{-ix}}{2}$
- $e^{i(a+b)}=e^{ia}e^{ib}$
$→\;\cos (a+b)+i\sin (a+b)=(\cos a+i\sin a)(\cos b+i\sin b)$
$=(\cos a\cos b-\sin a\sin b)+i(\cos a\sin b+\sin a\cos b)\;$ [addition theorem]
- $e^{in\theta}=(e^{i\theta})^n$
$\cos(2\theta)+i\sin(2\theta)=(\cos\theta+i\sin\theta)^2$
$(\cos^2\theta-\sin^2\theta)+i2\cos\theta\sin\theta\;$ [double-angle formula]
- $\cos(3\theta)+i\sin(3\theta)=(\cos\theta+i\sin\theta)^3$
$=(\cos^3\theta-3\cos\theta\sin^2\theta)+i(3\cos^2\theta\sin\theta-\sin^3\theta)$
$=(4\cos^3\theta-3\cos\theta)+i(3\sin\theta-4\sin^3\theta)\;$ [tripple-angle formula]
- $\sin^2(\frac{x}{2})=\bigl(\frac{e^{i\frac{x}{2}}-e^{-i\frac{x}{2}}}{2i}\bigr)^2=\frac{e^{ix}+e^{-ix}-2}{-4}=\frac{1-\cos x}{2\;}$ [half-angle formula]
- $\cos^2(\frac{x}{2})=\bigl(\frac{e^{i\frac{x}{2}}+e^{-i\frac{x}{2}}}{2}\bigr)^2=\frac{e^{ix}+e^{-ix}+2}{4}=\frac{1+\cos x}{2\;}$
- $\cos a\sin b=\frac{e^{ia}+e^{-ia}}{2}・\frac{e^{ib}-e^{-ib}}{2i}$
$=\frac{e^{i(a+b)}-e^{-i(a+b)}-e^{i(a-b)}+e^{-i(a-b)}}{4i}$
$=\frac{1}{2}\bigl(\frac{e^{i(a+b)}-e^{-i(a+b)}}{2i}-\frac{e^{i(a-b)}-e^{-i(a-b)}}{2i}\bigr)=\frac{1}{2}(\sin (a+b)-\sin (a-b))\;$[sum of products]
- $\cos a\cos b=\frac{1}{2}(\cos (a+b)+\cos (a-b))$
- $\sin a\sin b=-\frac{1}{2}(\cos (a+b)-\cos (a-b))$
- $\sin a\cos b=\frac{1}{2}(\sin (a+b)+\sin (a-b))$
- $e^{ia}+e^{ib}=e^{\frac{i(a+b)}{2}}e^{\frac{i(a-b)}{2}}
+e^{\frac{i(a+b)}{2}}e^{\frac{-i(a-b)}{2}}$
$=e^{\frac{i(a+b}{2}}\left(e^{\frac{i(a-b)}{2}}+e^{\frac{-i(a-b)}{2}}\right)$
$=\left(\cos (\frac{a+b}{2})+i\sin (\frac{a+b}{2})\right)
・\left(\cos (\frac{a-b}{2})+i\sin (\frac{a-b}{2})+\cos (\frac{a-b}{2})-i\sin (\frac{a-b}{2})\right)$
$=2\cos (\frac{a-b}{2})\left(\cos (\frac{a+b}{2})+i\sin (\frac{a+b}{2})\right)$
$=2\cos (\frac{a-b}{2})\cos (\frac{a+b}{2})+i2 \cos (\frac{a-b}{2})\sin (\frac{a+b}{2})$
- while $e^{ia}+e^{ib}=(\cos a+i\sin a)+(cos b+\sin b)$
$=(\cos a+\cos b)+i(\sin a+\sin b)→\;$
- $\cos a+\cos b=2\cos (\frac{a+b}{2})\cos (\frac{a-b}{2})\;$ [product of sum]
- $\cos a-\cos b=-2\sin (\frac{a+b}{2})\sin (\frac{a-b}{2})$
- $\sin a+\sin b=2\sin (\frac{a+b}{2})\cos (\frac{a-b}{2})$
- $\sin a-\sin b=2\cos (\frac{a+b}{2})\sin (\frac{a-b}{2})$
17. テイラー展開:
- radius of convergence: 収束半径
- : ダランベールの収束判定法
- d'Alembert's ratio test:
$\displaystyle\lim_{n\to\infty}
|\frac{a_{n+1}}{a_n}|=r$
- $r<1:\;$ convergence
- $r>1:\;$ divergence
>Top 18. Fourier expansion:
- continuous $f(x)$ defined in $0≤x≤2\pi$ can be expressed by the combination of trigonometric funtions, i.e.:
- $f(x)=c+\displaystyle\sum_{n=1}^{\infty}\bigl(a_n\cos (nx)+b_n\sin (nx)\bigr)$...(*1)
- where $c$ is the average of (*1): $c=\frac{1}{2\pi}\displaystyle\int_0^{2\pi}f(x)dx$...(*2)
- coefficient $a_n, \;b_n$ can be:
$\cases{a_n=\frac{1}{\pi}\displaystyle\int_0^{2\pi}f(x)\cos(nx)dx
\\b_n=\frac{1}{\pi}\displaystyle\int_0^{2\pi}f(x)\sin(nx)dx}$
- where, $n=0$ of (*2): $→\;c=\frac{1}{2}a_0
- so, $\boxed{f(x)=\frac{a_0}{2}+\displaystyle\sum_{n=1}^{\infty}
\bigl(a_n\cos (nx)+b_n\sin (nx)\bigr)}$...(*3) [Fourier series]
- here: $\displaystyle\int_0^{2\pi}\cos(mx)\cos(nx)dx$
$=\frac{1}{2}\displaystyle\int_0^{2\pi}\bigl(\cos(m+n)x+\cos(m-n)x\bigr)dx$
$=\frac{1}{2}\left[\frac{1}{m+n}\sin (m+n)x+\frac{1}{m-n}\sin (m-n)x\right]_0^{2\pi}=\pi \delta_{mn}\;$
[Kronecker delta: $\delta_{mn}=1\;(m=n),\;0\;(m\ne n)]$
- similarly: $\displaystyle\int_0^{2\pi}\sin (mx)\sin (nx)dx=\pi\delta_{mn}$
- $\displaystyle\int_0^{2\pi}\sin (mx)\cos (nx)dx=0$
18. フーリエ展開:
>Top 19. Linear algebra:
- Gaussian elimination method:
- multiply 1st row: $-\frac{d}{a}$ then add to 2nd row:
$\pmatrix{a&b&c\\d&e&f\\g&h&i}\;$
- multiply 1st row: $-\frac{g}{a}$ then add to 3rd row:
$\pmatrix{a&b&c\\0&e'&f'\\g&h&i}\;$
- multiply 1st row: $-\frac{g}{a}$ then add to 3rd row:
$\pmatrix{a&b&c\\0&e'&f'\\0&h'&i'}\;$
- multiply 2nd row: $-\frac{h'}{e'}$ then add to 3rd row:
$\pmatrix{a&b&c\\0&e'&f'\\0&0&i''}\;$
- Cofactor expansion:
- $\pmatrix{a&b&c&d&\\0&e&f&g\\0&0&h&-i&\\0&0&0&j}=a・e・h・j$
- $|A|=a_{i1}\tilde{a}_{i1}+a_{i2}\tilde{a}_{i2}+\cdots+a_{in}\tilde{a}_{in}
=\displaystyle\sum_{j=1}^na_{ij}\tilde{a}_{ij}$
$=a_{1j}\tilde{a}_{1j}+a_{2j}\tilde{a}_{2j}+\cdots+a_{nj}\tilde{a}_{nj}
=\displaystyle\sum_{i=1}^na_{ij}\tilde{a}_{ij}$
- Properties of matrix (elementary row operations):
- Row switching:
- $R_i \leftrightarrow R_j$
- Scalar times:
- row multiplication: $kR_i→R_i, \;\mathrm{where}\;k≠0$
- row additon: $R_i+kR_j\leftrightarrow R_i, \;\mathrm{where}\; i≠j$
- invere of matrix: $T_{ij}^{-1}=T_{ij}$
- same two rows makes the matrix is $0$.
- $k$ times of a row and then add it to other row makes no change of the matrix.
- Commutative law:
- $AB\ne BA$
- $(A+B)+C=A+(B+C)$
- Associative law: $A(BC)=(AB)C$
- Indenty matrix:
- $E=\pmatrix{1&0&0\\0&1&0\\0&0&1}$
- $AE=A,\; EA=A$
- >Top Inverse matrix:
- $BA=E→\;A^{-1}A=E→\;AA^{-1}=E\;$ [regular matrix]
- from Cramer's rule:
- $\pmatrix{a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\
a_{31}&a_{32}&a_{33}}
\pmatrix{x_{11}&x_{12}&x_{13}\\x_{21}&x_{22}&x_{23}\\
x_{31}&x_{32}&x_{33}}
=\pmatrix{1&0&0\\0&1&0\\0&0&1}$
- $x_{11}=\frac{\tilde{a}_{11}}{|A|},\;
x_{21}=\frac{\tilde{a}_{12}}{|A|},\;
x_{31}=\frac{\tilde{a}_{13}}{|A|},\;$
- $X=\frac{1}{|A|}\pmatrix{\tilde{a}_{11}&\tilde{a}_{21}&\tilde{a}_{31}\\
\tilde{a}_{12}&\tilde{a}_{22}&\tilde{a}_{32}\\
\tilde{a}_{13}&\tilde{a}_{23}&\tilde{a}_{33}}
=\frac{1}{|A|}^tA^{ij}$
- $A=\pmatrix{a&b\\c&d},\; A^{-1}=\frac{1}{ad-bc}\pmatrix{d&-b\\-c&a}$
- Matrix multiplication :
- $|AB|=|A||B|$
- $|AA^{-1}|=|A||A^{-1}|=1→\;|A^{-1}|=\frac{1}{|A|}$
- >Top Linearly dependent:
- if there exist scalars $a_1,a_2,\cdots,a_n$ , not all zero, such that:
- $a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+a_n\mathbf{v}_n=\mathbf{0}$...(*)
- $\mathbf{v}_1=\frac{-a_2}{a_1}\mathbf{v}_2+\cdots+\frac{-a_n}{a_1}\mathbf{v}_n\;$ [if $a_1≠0$]
thus $\mathbf{v}_1$ is shown to be a linear combination of the remaining vectors.
- a sequence of vectors ($\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n$) is linearly independent if (*) can only be satisfied by $a_i=0$ for $i=1,\cdots,n.$ this implies that no vector in the sequence can be represented as a linear combination of the remaining vectors.
- $\displaystyle\sum_{i=1}^na_i\mathbf{v}_i=\mathbf{0} \Rightarrow a_1=\cdots=a_n=0$
- a certain vector $\mathbf{x}$ can be uniquely expressed by linear combination of linearly independent vectors ($\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_n).$
- >Top Rank of a matrix $A$:
- is the maximum number of linearly independent row of vectors of the matrix: rank $A=n$
- is the dimension of the image of the linear map represented by $A$; which is converted to number of the rank dimension.
- by simplification of a square matrix, if $^\exists EA$, then $^\exists A^{-1}$
- eg.: $B=\pmatrix{1&0&1\\-2&-3&1\\3&3&0}=\pmatrix{1&0&1\\0&-3&3\\0&0&0}$:
- the first two columns linearly independent, but the third is a linear combination of the first two; thus the rank is 2.
- when the upper triangle matrix B has a column (or row) of all 0 elements (=rank down); the rank is $n-1$, here 3.
- Trace: sum of its diagonal entries.
- tr$(AB)=\displaystyle\sum_{i=1}^m\displaystyle\sum_{j=1}^na_{ij}b_{ij}
=\mathrm{tr}(BA)
$
- tr$(A)=\mathrm{tr}(^tA)$
- >Top Transposed matrix:
- $A=\pmatrix{a_{11}&\cdots&a_{1n}\\ \vdots&&\vdots\\a_{m1}&\cdots&a_{mn}}$
- $^tA=\pmatrix{a_{11}&\cdots&a_{m1}\\ \vdots&&\vdots\\a_{1n}&\cdots&a_{mn}}$
- $^{tt}A=A,\;^t(A+B)=^tA+^tB,\;^t(kA)=k^tA,\; ^t(kA+lB)=k^tA+l^tB,\;^t(AB)=^tB^tA$
- (square matrix): $^t(A^{-1})=(^tA)^{-1},\; \mathrm{tr}A=\mathrm{tr}^tA$
- $\mathrm{det} A=\mathrm{det}^tA$
- $\langle Ax,y\rangle=\langle x,^tAy\rangle$
- Coordinates transformation:
- $\pmatrix{p_x&q_x&r_x\\p_y&q_y&r_y\\p_z&q_z&r_z}\pmatrix{x'\\y'\\z'}
=\pmatrix{x\\y\\z}
$
$→\;\pmatrix{x'\\y'\\z'}
=\pmatrix{p_x&q_x&r_x\\p_y&q_y&r_y\\p_z&q_z&r_z}^{-1}\pmatrix{x\\y\\z}
$
- $\pmatrix{p_x&q_x&r_x\\p_y&q_y&r_y\\p_z&q_z&r_z}\pmatrix{x'\\y'\\z'}
=\pmatrix{s_x&t_x&u_x\\s_y&t_y&u_y\\s_z&t_z&u_z}\pmatrix{x\\y\\z}
$
$→\;\pmatrix{x'\\y'\\z'}
=\pmatrix{p_x&q_x&r_x\\p_y&q_y&r_y\\p_z&q_z&r_z}^{-1}
\pmatrix{s_x&t_x&u_x\\s_y&t_y&u_y\\s_z&t_z&u_z}\pmatrix{x\\y\\z}$
- >Top Eigenvalue and eigenvector:
- $\bf{Ax}=\lambda \bf{x}\;[x:$ eigenvector]
$\bf{Ax}-\lambda \bf{Ex}=0→\;(\bf{A}-\lambda \bf{E})\bf{x}=0$
$(\bf{A}-\lambda \bf{E})=0\; [x\ne 0$; Eigen equation]
$\lambda=\lambda_i,\;(i=1,2,\cdots,n)\;$ [eigenvalue]
solve: $(A-\lambda_iE=0)x=0\;$ [n-unknown simul.linear.eq]
$→\;x=x_\;(i=1,2,\cdots,n)\;$ [eigenvector]
- ¶1:$A=\pmatrix{2&3\\4&1}$
$\pmatrix{2-\lambda&3\\4&1-\lambda}=(2-\lambda)(1-\lambda)-12$
$→\;=(\lambda-5)(\lambda+2)=0\;\therefore\;\lambda=5, -2$
- i) when: $\lambda=5:→\;\pmatrix{-3&3\\4&-4}\pmatrix{x\\y}
=\pmatrix{0\\0}
\Leftrightarrow \\cases{-3x+3y=0\\4x-4y=0}
\Leftrightarrow x-y=0$
$x=s_1:, y=s_1→\;x_1=s_1\pmatrix{1\\1} \; (s_1≠0)$
- ii) when: $\lambda=-2:→\;\pmatrix{4&3\\4&3}\pmatrix{x\\y}
=\pmatrix{0\\0}
\Leftrightarrow 4x+3y=0$
$x=-3s_2:, y=4s_2→\;x_2=s_2\pmatrix{-3\\4} \; (s_2≠0)$
- ¶2:$A=\pmatrix{2&1$1\\1&2$1\\1&1&2}$
$\pmatrix{2-\lambda&1$1\\1&2-\lambda&1\\1&1&2-\lambda}
=-(\lambda-1)^2(\lambda-4)$
$→\therefore\;\lambda=1, 4$
- i) when: $\lambda=1:→\;\pmatrix{1&1&1\\1&1&1\\1&1&1}\pmatrix{x\\y\\z}
=\pmatrix{0\\0\\0}
\Leftrightarrow x+y+z=0$
$x=s_1:, y=t_1→\;z=-s_1-t_1$
$→\;x_1=\pmatrix{s_1\\t_1\\-s_1-t_1} \; (s_1, t_1≠0)$
$=s_1\pmatrix{1\\0\\-1}+t_1\pmatrix{0\\1\\-1}$
- ii) when: $\lambda=4:→\;\pmatrix{-2&1&1\\1&-2&1\\1&1&-2}\pmatrix{x\\y\\z}
=\pmatrix{0\\0\\0}$
$→\left(\begin{array}{ccc|c}1&0&-1&0\\0&1&-1&0\\0&0&0&0\\\end{array}\right)$
$\cases{x-z=0\\y-z=0}→\;x=y=z=s_2→\;s_2\pmatrix{1\\1\\1}$
- >Top Diagonalization-I (no-double solution):
- diagonalizable square matrix $A$:
- Diagonal matrix of $A$ exists in the form of:
$P^{-1}AP=\pmatrix{\lambda_1&&&0\\&\lambda_2&&\\
&&\ddots&\\0&&&\lambda_n\\}\; [P\;$ is transformation matrix; $\lambda_n\; $eigenvalue]
- $(P^{-1}AP)^n=\underbrace{(P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)}_{n}=P^{-1}A^nP\therefore\;A^n=P(P^{-1}A^nP)P^{-1}$
- Formula:
where, linearly independent eigenvector
($x_1,x_2,\cdots,x_n$) of a square matrix $A$:
let $P=(x_1,x_2,\cdots,x_n)$ then,
$P^{-1}AP=\pmatrix{\lambda_1&&&0\\&\lambda_2&&\\
&&\ddots&\\0&&&\lambda_n\\}\; [P\;$ is transformation matrix; $\lambda_n$
- Proof: $P$ has inverse matrix:
$C_1x_1+C_2x_2+\cdots+C_nx_n=(x_1,x_2,\cdots,x_n)
\pmatrix{C_1\\C_2\\\vdots\\C_n}=0\;$
[$n$-dimensional simultaneous linear eq.] ...(*)
if rank$(P<0)$, then (*) has the solution other than trivial one $(C_1=C_2=\cdots=C_n=0)$, which contracts linearly independence of $x_1,x_2,\cdots,x_n$; thus rank$ (P)=n→\;P$ is regular matrix.
- Proof-2: being diagonal matrix:
$P^{-1}AP^=P^{-1}A(x_1,x_2,\cdots,x_n)=P^{-1}(Ax_1,Ax_2,\cdots,Ax_n)$
$=P^{-1}(\lambda_1x_1,\lambda_2x_2,\cdots,\lambda_nx_n)$
$=P^{-1}(x_1,x_2,\cdots,x_n)\pmatrix{\lambda_1&&&0\\&\lambda_2&&\\
&&\ddots&\\0&&&\lambda_n\\}\; [P=(x_1,x_2,\cdots,x_n)]$
- here cf.: $(\lambda_1x_1,\lambda_2x_2)
=\pmatrix{\lambda_1x_1&\lambda_2x_2\\\lambda_1y_1&\lambda_2y_2}
=\pmatrix{x_1&x_2\\y_1&y_2}\pmatrix{\lambda_1&0\\0&\lambda_2}$
- Formula:
where,
eigenvector $x_1,x_2,\cdots,x_k$ corresponding different eigenvalue of $\lambda_1,\lambda_2,\cdots,\lambda_k$ of $n$-sized square matrix $A$ is linearly independent. $(1≤k≤n)$...(*0)
- Proof:
when $k=1$, (*0) is obvious. [$c_1x_1=0,\; x_1≠\mathbf{0}→\;c_1=0$]
assume $k=m$
(*) is true, and consider: $C_1x_1+C_2x_2+\cdots+C_mx_m+C_{m+1}x_{m+1}=0$...(*1)
multiply $A$
to (*1) from left:
$→\;C_1\lambda_1x_1+C_2\lambda_2x_2+\cdots+
C_m\lambda_mx_m+C_{m+1}\lambda_{m+1}x_{m+1}=0$...(a)
multiply $\lambda_{m+1}$ to (*1) from left:
$→\;C_1\lambda_{m+1}x_1+C_2\lambda_{m+1}x_2+\cdots+
C_m\lambda_{m+1}x_m+C_{m+1}\lambda_{m+1}x_{m+1}=0$...(b)
(a)-(b):$C_1(\lambda_1-\lambda_{m+1})x_1
+C_2(\lambda_2-\lambda_{m+1})x_2+\cdots
+C_m(\lambda_m-\lambda_{m+1})x_m=0$
here: $x_1,x_2,\cdots,x_m$
is linearly independent, then:
$C_i(\lambda_i-\lambda_{m+1})=0,\;(i=1,2,\cdots,m)$
here: $\lambda_i-\lambda_{m+1}≠0,\; (i=1,2,\cdots,m)$
$→\;C_1=C_2=\cdots=C_m=0$
substitute this to (*1): $→\;C_{m+1}x_{m+1}=0→\;C_{m+1}=0$
thus, $x_1,x_2,\cdots,x_{m+1}$
is linearly independent.
- ¶1: diagonalize: $A=\pmatrix{-2&1\\5&2}$
- $\pmatrix{-2-\lambda&1\\5&2-\lambda}=(-2-\lambda)(2-\lambda)-5
=(\lambda-3)(\lambda+3)=0→\;\lambda03, -3$
- i) when $\lambda=3:$
$\pmatrix{-5&1\\5&-1}\pmatrix{x\\y}=\pmatrix{0\\0}
\Leftrightarrow -5x+y=0$
$→\;x=x_1,\;y=5s_1→\;x_1=s_1\pmatrix{1\\5}$
- ii) when $\lambda=-3$
$\pmatrix{1&1\\5&5}\pmatrix{x\\y}=\pmatrix{0\\0}$
$\Leftrightarrow x+y=0→\;x=s_2, \;y=-s_2→\;x_1=s_2\pmatrix{1\\-1}$
thus: $P=\pmatrix{1&1\\5&-1}$ then $P^{-1}AP=\pmatrix{3&0\\0&-3}$
- check: $P^{-1}=\frac{1}{-6}\pmatrix{-1&-1\\-5&1}
=\frac{1}{6}\pmatrix{1&1\\5&-1}$
$→\;P^{-1}AP=\frac{1}{6}\pmatrix{1&1\\5&-1}
\pmatrix{-2&1\\5&2}\pmatrix{1&1\\5&-1}$
- here: $\frac{1}{6}\pmatrix{1&1\\5&-1}\pmatrix{-2&1\\5&2}\bigl(\bigr)$
$=\frac{1}{6}\pmatrix{3&3\\-15&3}\pmatrix{1&1\\5&-1}
=\frac{1}{6}\pmatrix{18&0\\0&18}=\pmatrix{3&0\\0&-3}$
- Diagonalization-II (double solution):
- diagonalize square matrix $A=\pmatrix{-2&2&4\\-2&3&2\\-2&1&4}$
$\pmatrix{-2-\lambda&2&4\\-2&3-\lambda&2\\12&1&4-\lambda}$
$=-(\lambda-1)(\lambda-2)^2=0→\;\lambda=1,\;2$(double)$
- i) $\lambda=1:$
$\pmatrix{-3&2&4\\-2&2&2\\-2&1&3}\pmatrix{x\\y\\z}
=\pmatrix{0\\0\\0}→\;x_1=s_1\pmatrix{2\\1\\1}$
- ii) $\lambda=2$
$\pmatrix{-4&2&4\\-2&1&2\\-2&1&2}\pmatrix{x\\y\\z}
=\pmatrix{0\\0\\0}\;\Leftrightarrow -2x+y+2z=0$→\;$x=s_2,\;z=t_2, y=2s_2-2t_2$
$→\;x_2=s_2\pmatrix{1\\2\\0}+t_2\pmatrix{0\\-2\\1}$
- here: $\pmatrix{2\\1\\1},\;\pmatrix{1\\2\\0},\;\pmatrix{0\\-2\\1}$ are linealy independent, and eigenvector.
- $p^{-1}AP=\pmatrix{1&0&0\\0&2&0\\0&0&2}$
- Diagonalization-III (no diagnalizable case)
- $A=\pmatrix{-3&-1\\1&-1}$
$\pmatrix{-3-\lambda&-1\\1&-1-\lambda}=(-3-\lambda)(-1-\lambda)+1
=\lambda^2+4\lambda+4=(\lambda+2)^2=0→\;\lambda=-2\;$ (double)
$\Leftrightarrow x+y=0$→\;$x=s_1,\;y=-s_1 →\; x_1=s_1\pmatrix{1\\-1}$
there is no other independent eigenvector than this: thus 'no diagonal'
19. 線形代数:
- Gaussian elimination: ガウスの消去法, 掃き出し法
- identity (unit) matrix: 単位行列
- upper triangle matrix: 上三角行列
- cofactor expansion: 余因子展開
- rank: 階数
- trace: 跡, 対角線成分
- linear combination: 線形結合
- transposed matrix: 転置行列
- coordinate transformation: 座標変換
- eigenvalue: 固有値
- eigenvector: 固有ベクトル
- diagonalization: 対角化
- diagonalizable: 対角化可能
- regular matrix =reversible matrix: 正則行列 (=可逆行列)
- transformation (=diagonalizable) matrix: 変換(=対角化)行列
- 掃き出し法:
- 余因子展開:
- 特徴:
- スカラー倍
- 可換法則
- 結合法則
- 単位行列
- 乗算
- 線形独立(=一次独立)
- ランク, 階数
- 転置行列
- 逆行列, Inverse matrix:
- make $^tA$
- make $\tilde{A}$
- consider sgn $\tilde{A}$
- 座標変換:
- 固有値と固有ベクトル:
- 対角化:
>Top 20. Delta function:
- Paul Dirac's delta function:
- definition-1: $\delta(x-a)=\cases{\infty,\;(x=a)\\0,\;(x≠0)}$
- definition-2: $\int_{-\infty}^{\infty}f(x)\delta(x-a)dx=f(a)$
- when $f(x)=1→\;\int_{-\infty}^{\infty}\delta(x-a)dx=1$ [size of infinity]...(*)
- point mass of a mass $m$ on $x=a:\;\int_{-\infty}^{\infty}m\delta(x-a)dx=m$
- but, mathematically (*) normal function will be zero; which is called distribution (by Schwarz) or hyperfunction (by Sato).
20. デルタ関数:
- point mass: 質点
>Top 21. Gaussian integration:
- Definition: $\boxed{\displaystyle\int_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi}}$
- proof: $I=\displaystyle\int_{-\infty}^{\infty}e^{-x^2}dx$
- $I^2=(\displaystyle\int_{-\infty}^{\infty}e^{-x^2}dx)
(\displaystyle\int_{-\infty}^{\infty}e^{-y^2}dy)\;[x↔y]$
$=\displaystyle\int_{-\infty}^{\infty}\displaystyle\int_{-\infty}^{\infty}e^{x^2+y^2}dxdy$
- let: $x=r\cos\theta,\;y=r\sin\theta$, then
$I^2=\displaystyle\int_0^{2\pi}\displaystyle\int_0^{\infty}e^{-r^2}rdrd\theta$
- surface integral: $ds=\pi(r+dr)^2\frac{d\theta}{2\pi}-\pi r^2\frac{d\theta}{2\pi}
=rdrd\theta+\frac{1}{2}(dr)^2d\theta \simeq rdrd\theta
$
- $I^2=\displaystyle\int_0^{2\pi}d\theta\displaystyle\int_0^{\infty}re^{-r^2}rd$
$=2\pi\left[-\frac{1}{2}e^{-r^2}\right]_0^{\infty}=\pi\;→I=\sqrt{\pi},\;(I>0)$
- Net outflow:$=(\frac{\partial V_x}{\partial x}+\frac{\partial V_y}{\partial y}
+\frac{\partial V_z}{\partial z}
)\Delta x\Delta y\Delta z$
- thus outflow per volume: $=div \mathbf{V}$
21. ガウス積分:
>Top 22. Vector analysis:
- Divergence: outflow-inflow
- $V_x(x+\frac{\Delta x}{2},y,z)\Delta y\Delta z-V_x(x-\frac{\Delta x}{2},y,z)\Delta y\Delta z$
$=\bigl(V_x(x+\frac{\Delta x}{2},y,z)-V_x(x-\frac{\Delta x}{2},y,z)\bigr)\Delta y\Delta z$...(*)
- Taylor expansion: $f(a+h)=f(a)+f'(a)h+\frac{1}{2!}f''(a)h^2+\cdots$
- $Vx(x±\frac{\Delta x}{2},y,z)\simeq Vx(x,y,z)
±\frac{\partial V_x}{\partial x}\frac{\Delta x}{2}$
- (*)$\simeq\bigl(V_x(x,y,z)+\frac{\partial V_x}{\partial x}\frac{\Delta x}{2}
-V_x(x,y,z)
+\frac{\partial V_x}{\partial x}\frac{\Delta x}{2}\bigr)\Delta y\Delta z
=\frac{\partial V_x}{\partial x}
\Delta x\Delta y\Delta z$
- >Top Rotation:
- Definition: $rot \mathbf{V}
=\bigl(\frac{\partial V_z}{\partial y}-\frac{\partial V_y}{\partial z},
\frac{\partial V_x}{\partial z}-\frac{\partial V_z}{\partial x},
\frac{\partial V_y}{\partial x}-\frac{\partial V_x}{\partial y}\bigr)$
$=\nabla \times \mathbf{V}\;
[\nabla=(\frac{\partial }{\partial x}, \frac{\partial }{\partial y}, \frac{\partial }{\partial z})]$
- $=\bigl(V_y(x+\frac{\Delta x}{2},y)-V_y(x-\frac{\Delta x}{2},y)\bigr)\Delta y
+\bigl(V_x(x,y-\frac{\Delta y}{2})-V_x(x,y+\frac{\Delta x}{2})\bigr)
\Delta x$
$\simeq \bigl(V_y(x,y)+\frac{\partial V_y}{\partial x}\frac{\Delta x}{2}
-V_y(x,y)+\frac{\partial V_y}{\partial x}\frac{\Delta x}{2}\bigr)\Delta y
+\bigl(V_x(x,y)-\frac{\partial V_x}{\partial y}\frac{\Delta y}{2}
-V_x(x,y)-\frac{\partial V_x}{\partial y}\frac{\Delta y}{2}\bigr)\Delta x$
$=(\frac{\partial V_y}{\partial x}-\frac{\partial V_x}{\partial y})\Delta x\Delta y$
- per unit space: $=\frac{\partial V_y}{\partial x}-\frac{\partial V_x}{\partial y}
\; [z$-component of $rot\;\mathbf{V}$]
- Gradient:
- Definition: grad $f=(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},
\frac{\partial f}{\partial z})\;$[grad $f$ means mostly† increasing direction]
- Proof (†):$\Delta f=f(r+\Delta r)-f(r)$
$=f(x+\Delta x, y+\Delta y, z+\Delta z)-f(x,y,z)$
$\simeq f(x,y,z)+\frac{\partial f}{\partial x}\Delta x
+\frac{\partial f}{\partial y}\Delta y+\frac{\partial f}{\partial z}\Delta z$
$=(\mathrm{grad}\;f)・\Delta r=|\mathrm{grad}\;f||\Delta r|\cos\theta
≤|\mathrm{grad}\;f||\Delta \mathbf{r}|\; [\theta=0\;$maximum]
- >Top Solid angle: (unit: Steradian $d\Omega$)
- $dS=r^2\sin\theta d\theta d\phi$
$d\Omega\equiv \frac{dS}{r^2}=\sin\theta d\theta d\phi$
- ¶1: [global surface]
$=\displaystyle\int_0^{2\pi}\displaystyle\int_0^{\pi}\sin\theta d\theta d\phi=4\pi$
- ¶2: $[\theta_1→\theta_2,\;\phi_1→\phi_2]$
$=(\phi_2-\phi_1)(\cos\theta_1-\cos\theta_2)$
- ¶3: [half-apex angle=$\alpha$]
$=\displaystyle\int_0^{2\pi}\displaystyle\int_0^{\alpha}\sin\theta d\theta d\phi
=2\pi(1-\cos\alpha)$
- >Top Spherical coordinates:
- $\cases{x=r\sin\theta\cos\phi\\y=r\sin\theta\sin\phi\\z=r\cos\theta}$
$\cases{r=\sqrt{x^2+y^2+z^2}\;(0≤r)\\\theta=\cos^{-1}(\frac{z}{\sqrt{s^2+y^2+z^2}})
\;(0≤\theta ≤\pi)
\\\phi=\mathrm{sgn}(y)\cos^{-1}(\frac{x}{\sqrt{x^2+y^2}})\;
(0≤\phi<2\pi) }
$
- here: sgn$(y)=\cases{1\;(0≤y)\\-1\;(y<0)}$
22. ベクトル解析:
- vector field: ベクトル場
- position vector: 位置ベクトル
- solid angle: 立体角
- steradian: 立体角の単位 (sr)
>Top 23. Integration method:
- Some Calculus formula:
- $y=fg\\
\log y=\log(fg)=\log f+\log g\\
\frac{y'}{y}=\frac{f'}{f}
+\frac{g'}{g}\\
y'=f'g+fg'$
- $y=(\frac{f}{g})$
$\log y=\log\frac{f}{g}
=\log f-\log
g\\
\frac{y'}{y}=\frac{f'}{f}
-\frac{g'}{g}\\
y'=\frac{f'}{g}-\frac{fg'}{g^2}
=\frac{f'g-fg'}{g^2}$
- $(e^x)'=e^x$
- $(a^x)'=a^x\log a$
- $y=(x^x)'$
$\log y=x\log x$
$\frac{y'}{y}=\log x+1\\
y'=y(\log x+1)=x^x(\log x+1)$
- $(\log x)'=\frac{1}{x}$
- $(\log y)'=\frac{y'}{y}$
- $(\log_ax)'\\
=(\frac{\log x}{\log a})'\\
=\frac{1}{\log a}(\log x)'\\
=\frac{1}{x\log a}
$
- Some Integral formula:
- $\int\frac{1}{x}=\log|x|+C$
- $\int\frac{1}{x^2}=-\frac{1}{x}+C$
- $\int \frac{f'}{f}=\log|f|+C$
- $\int e^xdx=e^x+C$
- $\int a^x=\frac{a^x}{\log a}+C$
- $\int a^x\log adx=a^x+C$
- $\int\log xdx=\int x'\log xdx=x\log x-x(\log x)'dx=x\log x-\int dx$
$=x\log x-x+C\;$ [\log = 1・\log]
- $\int \frac{1}{x\log a}dx=\log_ax$
- $\int \sin xdx=-\cos x+C$
- $\int \cos xdx=\sin x+C$
- $\int \tan xdx=\int \frac{\sin x}{\cos x}dx=-\int\frac{(\cos x)'}{\cos x}dx$
$=-log|\cos x|+C$
- $\int \sec^2xdx=\tan x+C$
- $\int \csc^2xdx=-cotx+C$
- $\int \frac{1}{\cos^2x}dx=\tan x+C$
- $\int \frac{1}{\sin^2x}dx=-\frac{1}{\tan x}+C$
- $\int\frac{1}{x^2+a^2}dx=\frac{1}{a}\tan^{-1}\frac{x}{a}+C,\;(a≠0)$
- $\int\frac{1}{\sqrt{x^2-a^2}}dx=\sin^{-1}\frac{x}{a}+C,\;(a>0)$
- $\int\frac{1}{\sqrt{x^2+a}}dx=\log |x+\sqrt{x^2+a}|+C,\;(a≠0)$
- Integration by parts:
- $\int f(x)g'(x)dx=f(x)g(x)-\int f'(x)g(x)dx$
- ¶$\int\log|x|dx=\int x'\log|x|dx=x\log|x|-\int x(\log|x|)'dx$
$=x\log|x|-\int x\frac{1}{x}dx=x\log|x|-x+C$
- $\int f(g(x))g'(x)dx=$ [differential contact type]
- let:$g(x)=t$
- $\int \frac{f'(x)}{f(x)}dx=\log|f(x)|+C$
- $\int(f(x))^af'(x)dx=\frac{(f(x)^{a+1})}{a+1}+C$
- ¶$\int x^ne^xdx=x^ne^x-\int (x^n)'e^x$
- ¶$\int \frac{1}{\cos^3xdx}$
$=\int \frac{1}{\cos^2x}\frac{1}{\cos x}dx
=\tan x\frac{1}{\cos x}-\int \tan x\frac{\sin x}{\cos^2x}dx$
$=\frac{\sin x}{\cos^2x}-\int \frac{\sin^2 x}{\cos^3 x}$
$=\frac{\sin x}{\cos^2x}-\int \frac{1}{\cos^3x}dx+\int \frac{1}{\cos x}dx$
$2\int \frac{1}{\cos^3x}dx
=\frac{\sin x}{\cos^2x}+\frac{1}{2}\log\big|\frac{1+\sin x}{1-\sin x}\big|+C$
- ¶$\int (\log x)^3dx)$
- $t=\log x→\;dt=\frac{1}{x}dx→dx=e^tdt$
$=\int t^3e^tdt=t^3e^t-3t^2e^t+6te^t-6e^t+C=(t^3-et^2+6t-6)e^t+C$
$=\{(\log x)^3-(\log x)^2+6\log x-6\}x+C$
- Integration by substitution:
- $\int f(x)dx=\int f(g(t))g'(t)dt$
- ¶$\int_0^1x^2dx
=\int_0^2\frac{1}{4}t^2
\frac{1}{2}dt$
- $x=\frac{1}{2}t$
- $dx=\frac{1}{2}dt$
- ¶$\int_0^1\sqrt{1-x^2}dx$...(*)
let:
$x=\sin(u),\;dx=\cos udu$
$→\sqrt{1-x^2}=\cos(u)$
$=\int_0^{\frac{\pi}{2}}
\cos^2(u)
du
=(\frac{u}{2}+ \frac{\sin(2u)}{4})
\big|_0^{\frac{\pi}{2}}
=\frac{\pi}{4}$
- ¶$\int_a^b(x-a)(x-b)dx
=\int_a^b\{(x-a)^2-(b-a)(x-a)\}dx$
$=\frac{1}{3}(x-a)^3-(b-a)\frac{1}{2}(x-a)^2\big|_a^b=-\frac{1}{6}(b-a)^3$
- ¶$\int \frac{1}{\cos x}dx\;$ [→*tips]
$=\int \frac{1+t^2}{1-t^2}\frac{2}{1+t^2}dt=\int \frac{2}{1-t^2}dt$
$=\int (\frac{1}{1+t}+\frac{1}{1-t})dt=\log |1+t|-\log |1-t|+C
=\log |\frac{1+t}{1-t}|+C
$
$=\log \big|\frac{1+\tan\frac{x}{2}}{1-\tan\frac{x}{2}}\big|+C$
- ¶$\int \frac{1}{\sin x}dx\;$...(*) [→*tips]
$\frac{1}{\sin x}=\frac{\sin x}{1-\cos^2x},\; t=\cos x→dt=-sin xdx$
$(*)=\int \frac{\sin x}{1-t^2}\frac{1}{-\sin x}dt=\int \frac{1}{t^2-1}
=\frac{1}{2}\int (\frac{1}{t-1}-\frac{1}{t+1})dt
$
$=\frac{1}{2}(\log|t-1|-log|t+1|)+C=\frac{1}{2}\log |\frac{t-1}{t+1}|+C$
$=\frac{1}{2}\log \big|\frac{1-\cos x}{1+\cos x}\big|+C$
- Rotational body integral: around x-axis:
$V=\pi\int_a^bf(x)^2dx$
- Baumkuchen type integral (shell integration): around y-axis:
$f(x)=g(x)-h(x)$
$V=2\pi\int_a^bxf(x)dx$
- Pappus-Guildinus theorem:
volume of a solid revolution by roatating about an external axis ($y$):
- $V=2\pi rS\;$ [r=distance from axis to the gravity, S=space of the graph]
- $x_G=\frac{m_1x_1+m_2x_2+\cdots+m_nx_n}{m_1+m_2+\cdots+m_n}$
$=\frac{\int_a^b x\rho f(x)dx}{\int_a^b\rho f(x)dx}\; [\rho=$specific density]
$=\frac{\int_a^b xf(x)dx}{S}$
- $S=\displaystyle\int_a^b f(x)dx$
- $V=\int_a^b 2\pi xf(x)dx\;$ [Baumkuchen]
- $x_G=\frac{\frac{V}{2\pi}}{S}\therefore\;\boxed{V=2\pi Sx_G}$
- King property:
- $\int_a^b f(x)dx=\int_a^b f(a+b-x)dx$
effective when $f(x)+f(a+b-x)$ is easily calculated.
- ¶1:$\int_{-1}^1\frac{\sin^2(\pi x)}{1+e^x}dx$...I
$2I=\{\int_{-1}^1\frac{\sin^2(\pi x)}{1+e^x}
+\frac{\sin^2(\pi x)}{1+e^{-x}}\}dx$
$=\int_{-1}^1\sin^2(\pi x)dx=\int_{-1}^1\frac{1-\cos (2\pi x)}{2}dx$
$=\frac{1}{2}x-\frac{1}{4\pi}\sin(2\pi x)\big|_{-1}^1=1$
$\therefore\;I=\frac{1}{2}$
23. 積分法:
- integration by substitution: 置換積分法
- integration by parts: 部分積分法
- Basic:
$\sin(\frac{\pi}{2}-x)=\cos x$
$\cos(\frac{\pi}{2}-x)=\sin x$
$\sin(x+\frac{\pi}{2})=\cos x$
$\cos(x+\frac{\pi}{2})=-\sin x$
$\sin(x+\pi)=-\sin x$
$\cos(x+\pi)=-\cos x$
- Addition formula:
$\sin(a\pm b)=\sin a\cos b\pm \cos a\sin b$
$\cos(a\pm b)=\cos a\cos b\mp \sin a\sin b$
$\tan(a\pm b)=\frac{\tan a\pm\tan b}
{1\mp\tan a\tan b}$
- Double angle formula:
$\sin 2x=2\sin x\cos x$
$\cos 2x=\cos^2x-\sin^2x
=2\cos^2x-1=1-2\sin^2x$
$\tan 2x=\frac{2\tan x}{1-2\tan^2 x}$
- Half angle formula:
$\sin^2x=\frac{1}{2}(1-\cos 2x)$
$\cos^2x=\frac{1}{2}(x+\cos 2x)$
$\tan^2x=\frac{1-\cos 2x}{1+\cos 2x}$
$\tan x=\pm\frac{1-\cos 2x}{\sin 2x}$
- Tripple angle formula:
$\sin 3x=3\sin x-4\sin^3x$
$\cos 3x=-3\cos x+4\cos^3x$
- Product-Sum formula:
$\sin a\cos b=\frac{1}{2}\bigl(\sin(a+b)
+\sin(a-b)\bigr)$
$\sin a\sin b=\frac{1}{2}\bigl(-\cos(a+b)
+\cos(a-b)\bigr)$
$\cos a\cos b=\frac{1}{2}\bigl(\cos(a+b)
+\cos(a-b)\bigr)$
- Sum-Product formula:
$\sin a+\sin b=2\sin\frac{a+b}{2}
\cos\frac{a-b}{s}$
$\sin a-\sin b=2\cos\frac{a+b}{2}
\sin\frac{a-b}{s}$
$\cos a+\cos b=2\cos\frac{a+b}{2}
\cos\frac{a-b}{2}$
$\cos a-\cos b=-2\sin\frac{a+b}{2}
\sin\frac{a-b}{2}$
- $(\sin^{-1}x)'=\frac{1}{\sqrt{1-x^2}}$
$(\cos^{-1}x)'=-\frac{1}{\sqrt{1-x^2}}$
$(\tan^{-1}x)'=\frac{1}{1+x^2}$
- >Top Integration by parts: (integral-first!)
- $\int f^0g^0=f^0g^{-1}-\int f^1g^{-1}$
$=f^0g^{-1}-f^1g^{-2}+\int f^2g^{-2}$
<*Tips>
- $f(\sin x)\cos x→t=\sin x$
→dt=\cos xdx
- $f(\cos x)\sin x→t=\cos x$
- $f(\tan x)\frac{1}{\cos^2x}
→t=\tan x$
$→dt=\frac{1}{\cos^2x}dx$
- $f(\sin x,\;\cos x)$...(*)
$→t=\tan\frac{x}{2}$
$→\sin x=\frac{2t}{1+t^2}$
$→\cos x=\frac{1-t^2}{1+t^2}$
$→dt=\frac{1+t^2}{2}dx$
$\int(*)dx
=f(\frac{2t}{1+t^2},\;
\frac{1-t^2}{1+t^2})
\frac{2}{1+t^2}dt$
- $\int\log xdx→\int 1・\log xdx$
- $\int_0^{\pi}xf(\sin x)dx$
$=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx$
- make square of trigonometry!
>Top 24. Multiple integral:
- Repeated integral:
- $\displaystyle\iint_D f(x,y)dxdy=\displaystyle\int_c^d\displaystyle\int_a^bf(x,y)dxdy$
$=\displaystyle\int_a^b\displaystyle\int_c^df(x,y)dydx$
- ¶1: $\displaystyle\iint_D(3x-y)dxdy,\;D=\{(xy)|0≤x≤1,\;-1≤y≤2|\}$
- $=\displaystyle\int_{-1}^2\displaystyle\int_0^1(3x-y)dxdy$
$=\displaystyle\int_{-1}^2\bigl[\frac{3}{2}x^2-yx\bigr]_0^1dy$
$=\displaystyle\int_{-1}^2(\frac{3}{2}-y)dy
=\bigl[\frac{3}{2}y-\frac{1}{2}y^2\bigr]_{-1}^2=3$
- $\displaystyle\int_0^1\displaystyle\int_{-1}^2(3x-y)dydx$
$=\displaystyle\int_0^1\bigl[3xy-\frac{1}{2}y^2\bigr]_{-1}^2dx$
$=\displaystyle\int_0^1(9x-\frac{3}{2})dx$
$=\bigl[\frac{9}{2}x^2-\frac{3}{2}x\bigr]_0^1=3$
- ¶2: $\displaystyle\iint_De^{x^2}dxdy,\;D=\{(x,y)|0≤y≤1,\;y≤x≤1\}$
- $=\displaystyle\int_0^1\displaystyle\int_y^1e^{x^2}dxdy$ [antiderivative?]
$=\displaystyle\int_0^1\displaystyle\int_0^xe^{x^2}dydx$
$=\displaystyle\int_0^1\bigl[ye^{x^2}\bigr]_0^xdx$
$=\displaystyle\int_0^1xe^{x^2}dx=\bigl[\frac{1}{2}e^{x^2}\bigr]_0^1=\frac{1}{2}(e-1)$
- Substitutive integral:
- ¶1: $\displaystyle\iint_D\frac{1}{x^2+y^2}dxdy,\;D=\{(x,y)|1≤x^2+y^2≤4,\;y≥0\}$
- $=\displaystyle\int_0^{\pi}\displaystyle\int_1^2\frac{1}{r^2}rdrd\theta$
$=\displaystyle\int_0^{\pi}\bigl[\log r\bigr]_1^2d\theta$
$=\displaystyle\int_0^{\pi}\log 2\theta=\pi\log 2$
- >Top Jacobian:
- $0\bigl(x(u,v),\;y(u,v)\bigr)$
$A\bigl(x(u+\Delta u,v),\;y(u+\Delta u,v)\bigr)$
$B\bigl(x(u,v+\Delta v),\;y(u,v+\Delta v)\bigr)$
- $x(u+\Delta u,v)\simeq x(u,v)+\frac{\partial x}{\partial u}\Delta u$
- $vec{OA}\simeq \bigl(\frac{\partial x}{\partial u}\Delta u,\;,
\frac{\partial y}{\partial u}\Delta u\bigr)$
$vec{OB}\simeq \bigl(\frac{\partial x}{\partial v}\Delta v,\;,
\frac{\partial y}{\partial v}\Delta v\bigr)$
- $\boxed{S\simeq \left|det\pmatrix{\frac{\partial x}{\partial u}&\frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u}&\frac{\partial y}{\partial v}}\right|\Delta u\Delta v
=J(u,v)\Delta u\Delta v}$
- thus: $\displaystyle\iint_D f(x,y)dxdy
=\displaystyle\iint_E f\left(x(u,v),\;y(u,v)\right)|J(u,v)|dudv$
- ¶1: J(u,v) on polar coordinates:
- $\cases{x=r\cos\theta\\y=r\sin\theta},\;\cases{u↔r\\v↔\theta}$
- $J(u,v)=\|det\pmatrix{\cos\theta&-r\sin\theta\\\sin\theta&r\cos\theta}\|=r$
- ¶2: $\displaystyle\iint_D (x-y)e^{x+y}dxdy,\;D=\{(x,y)|0≤x+y≤2,\;0≤x-y≤2\}$...(*)
- let: $x+y=u,\;v=x-y;\;\cases{x=\frac{1}{2}(u+v)\\y=\frac{1}{2}(u-v)}$
- $J(u,v)=\left|det\pmatrix{\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}}\right|
=\frac{1}{2}$
- (*)=$\displaystyle\int_0^2\displaystyle\int_0^2 ve^{u}\frac{1}{2}dudv$
$=\frac{1}{2}\displaystyle\int_0^2\bigl[ve^u\bigr]_0^2dv$
$=\displaystyle\int_0^2(ve^2-v)dv=\frac{1}{2}\bigl[\frac{1}{2}e^2v^2-\frac{1}{2}v^2\bigr]_0^2=e^2-1$
24. 重積分:
- iterated/repeated integral: 累次積分
- substitutive integral: 置換積分
- antiderivative=primitive function: 原子関数
- Jacobian matrix: ヤコビ行列 $J_f$
>Top 25. XXXX:
25. XXXX:
>Top 26. YYYY:
26. YYYY:
>Top 27. ZZZZ:
27. ZZZZ:
Comment
- In studying effectively, it's important to accumulate in the manner of dicrete, heurisitic, empirical, and then formalized knowledge.
- 効率的に学ぶには、離散的、発見的、実証的、そして形式化した知識を集めることが肝要である。
Memorandum of Mathematical Physics |
Cat: SCI |
|
Takumi (of Yobinori) |
20625u |
Original resume |
Remarks |
|
>Top 0. Preface:
|
0. 序文: |
>Top 1. Equation of motion (EOM):
|
1. 運動方程式:
|
>Top 2. Pendulum isochronism:
|
2. 振り子の等時性:
|
= >Top 3. Conservation law:
|
3. 保存則:
|
>Top 4. Damped oscillation:
|
4. 減衰振動:
|
>Top 5. Conservation law of angular momentum:
|
5. 角運動量保存則:
|
>Top 6. Inertial Frame:
|
6. 慣性系:
|
>Top 7. Coriolis Force:
|
7. コリオリの力:
|
>Top 8. Archimedean spiral:
|
8. アルキメデスの螺旋: |
>Top 9. Hyperbolic function:
|
9. 双曲線関数:
|
>Top 10. Inverse trigonometric function:
|
10: 逆三角関数: |
>Top 11. Two-particle system motion:
|
11. 二粒子系の運動:
|
>Top 12. Rigid body dynamics:
|
12. 剛体の力学:
|
>Top 13. Inertia moment of rigid body:
|
13. 剛体の慣性モーメント:
|
>Top 14. Mechanical energy of rigid body:
|
14. 剛体の力学的エネルギー:
|
>Top 15. Matrix exponential:
|
15. 行列指数関数:
|
>Top 16. Chauchy's functional equation:
|
16. コーシーの関数方程式:
|
>Top 17. Taylor expansion:
|
17. テイラー展開:
|
>Top 18. Fourier expansion:
|
18. フーリエ展開: |
>Top 19. Linear algebra:
|
19. 線形代数:
|
>Top 20. Delta function:
|
20. デルタ関数:
|
>Top 21. Gaussian integration:
|
21. ガウス積分: |
>Top 22. Vector analysis:
|
22. ベクトル解析:
|
>Top 23. Integration method:
|
23. 積分法:
<*Tips>
|
>Top 24. Multiple integral:
|
24. 重積分:
|
>Top 25. XXXX: |
25. XXXX: |
>Top 26. YYYY: |
26. YYYY: |
>Top 27. ZZZZ: |
27. ZZZZ: |
Comment |
|
|