| Bottom | Home | Article | Bookshelf | Keyword | Author | Oxymoron |

radioactive

"Keywords of Nuclear Energy

Cat: SCI
Pub: 2011
#: 1102b

Kanzo Kobayashi

11521u/18211r

Title

Key words of Nuclear Energy

核エネルギーのキーワード

Index
  1. Preface:
  2. Nuclear reactor:
  3. Nuclear fission:
  4. Plutonium:
  5. Radiation energy:
  6. Nuclear Fuel Cycle:
  1. 序:
  2. 原子炉:
  3. 核分裂:
  4. プルトニウム:
  5. 放射線エネルギー:
  6. 核燃料サイクル:
Key*

; ALARA; Cs-137; Dirty bomb; Dose limit; Indemnity; Kinetic energy; Lost century; Meltdown; MOX fuel; Neutron; Neutron moderator; Nuclear binding energy; One through; Plutonium; Property of Pu; Pu239; Radioactive decay; Rate of Return regulation; Sievert; Symptom of radiation; ;

Ref
  • Kenichi Ohmae, Kunihiko Takeda, Hiroaki Koide, Michio Kaku, Arnie Gundersen, etc. and othere nuclear specialists on YouTube, etc.
  • Taro Kono, House of Representative member (LDP)
  • Masayoshi Son, Softbank
  • Jinzaburo Takagi: "Future of Plutonium, message from 2041" Iwanami Shinsho, 1994
  • Hiroaki Tomokiyo: "Plutonium", Blue Backs, 1995
  • Hiroaki Koide: "We need not nuclear plants", 2011
  • 大前研一、武田邦彦、小出裕章、Michio Kaku, Arnie Gundersen他、原子力専門家 on YouTubeなど
  • 河野太郎:衆議院議員 (自民党)
  • 孫正義:ソフトバンク
  • 高木仁三郎:プルトニウムの未来、岩波新書, 1994
  • 友清裕昭:プルトニウム、ブルーバックス, 1995
  • 小出裕章:原発はいらない, 2011
Why?
  • About 14:46 on March 11, 2011, the Great Tohoku Earthquake with magnitude 9.0 (originally announced 8.8, but revised later) happened in the northeasten Japan.
  • The Fukushima nuclear accident level was raised level-7 on Apr. 11, after hesitation of one month.
  • Triple serious disasters have concurrently occurred; earthquake, tsunami, and nuclear power plant.
  • Here is a collection of key words related nuclear power plant, whose serious risks in the worst case, have been mentioned since the very beginning.
  • >Top The Fukushima shock that may cause Japan another "the lost decades", or could be "the lost century."
  • The Fukushima nuclear plants accident was ranked at last as the most serious one beyond Chernobyl (4/26/1986), and the Three Mile Island (3/28/1979) .
  • 2011/3/11 14:46頃、M9.0の東北・関東大震災が発生した。
  • 福島原発事故1ヶ月後の4/11に、レベル7に引き上げられた。
  • 地震、津波、原発と三重の災害が同時に発生した。
  • 原発に関連する警告のキーワードを集めてみた。万一の場合の深刻なリスクは、当初から指摘されていた。
  • 福島原発事故はもう一つの "失われた数十年" あるは"失われた百年"かも知れない。
  • 福島原発は、ついに、TMI事故(1979)や、チェルノブイリ(1986)に超える深刻な事故になってしまった。
Resume
Remarks

>Top 0. Preface:

  • 3.11 Disaster:
    Fukushima Nuclear disaster happened on Mar.11, 2011 will be the worst nuclear accident that humans have experienced.
  • >Top Dirty bomb:
    Total nuclide (fission product) produced by one nuclear reactor is almost 1,000 times per year (uranium 1 ton) of the Hiroshima A-bomb (uranium 800g). Japan has 54 operating nuclear plants, which produced about 50, 000 times more; which will be 2 million times more in 40 years. These amount of nuclear contaminated products must be continuously controlled and kept for nearly 100,000 years or more by many many future generations, in return for our lavish life.
  • Year
    Name of
    NPP
    Building destroyed
    Loss of power
    Hydrogen explositon
    2007 Shiga
    X
    2007 Kashiwazaki
    X
    2011 Onagawa
    X
    2011 Fukushima-II
    X
    2011 Totsu
    X
    X
    2011 Tokai-II
    X
    X
    2011 Fukushima-I
    X
    X
    X
    Vulnable NPP against earthquake (>M6):
    Safety review must be strengthened in view of the latest NPP accidents.
  • Fukushima-I NPP accident was at last assessed as Level-7; emitting fallout of $100\times 10^{18}$ Bq, while Kashiwazaki-Kariha NPP emitted 300 M Bq. (Fukushima-I emitted 3B times more.)

0. 序:

  • 3.11:
    2011/3/11に起こった福島原子力発電所は、人類最悪の事故になりつつある。
  • Dirty bomb:
    1つの原発から生成される核分裂生成物 (U 1t)は、広島型原爆(U 800g) の約1000発分。日本には54基の原発があり、ここからは5万発分。これが40年間稼働すると200万発分。これを、我々のぜいたくな生活の代償として、遠い将来の世代に継続的に管理されなければならない。
  • M6.0以上による原発事故:<左図>
    2007年以来7件、内3件で電源喪失、内1件で水素爆発
  • 80-100京ベクレルの放射性物質が飛散

>Top 1. Nuclear Reactor:

  • 1) Nuclear binding energy:
    • Maximum nuclear binding energy:
      • around mass number of 60
    • nuclear fission:
    • nuclear fusion:
      • 1g H = 150B calorie
  • 2) Nuclear fission reaction:
    • generated neutron: bomb (>1), reactor (=1)
    • Uranium atom:
      • U238 (99.28%)
      • U235 (0.715%)
      • U234 (0.005%)
    • U235 -> U236 -> Kr92 + Ba141 + 3 neutrons
    • >Top Kinetic energy:
      • 3M times more energy than coal
      • $7.2\times 10^{13}$ vs. $2.4\times 10^7$ joules/kg
      • 1g U = 20B calorie = 30K ton coal
    • Plutonium239 (Pu239):
      • nuclear fission product
      • natural fission reactor in Gabon 2B years ago
      • critical mass: sustained nuclear chain reaction
    • barn (b) = $10^{-28}$ sq.m cross sectional area of U nucleus
  • >Top 3) Neutron moderator;
    • reduce the velocity of fast neutrons
    • regular (light) water
    • heavy water
    • solid graphite
    • Beryllium
  • 4) Reactor:
    • Pressurized Water Reactor (PWR)
    • Boiling Water Reactor (BWR)
  • 5) Pros and cons of BWR and PWR:
    • BWR has simpler design than PWR; BWR has no steam generator.
    • PWR has steam generator, having primary and secondary coolant.
    • Reactor pressure vessel of BWR is 70-80 atm, while that of PWR is 150 atm.
    • Turbine generator of BWR is rotated by radioactive steam directly supplied by the reactor.
  • 6) Exposed dose: ICRP (International Commission on Radiological Protection)
    • 1958: as low as possible
    • 1965: as low as practicable possible
    • recent: as low as readily achievable
  • 7) >Top Meltdown:
    • Pressure vessel (PV) made of 16cm thick steel: 20m high, 5-6m in diameter.
    • Container vessel (CV) made of 3cm thick steel:
    • Steel melts at 1535ºC
    • Nuclear fuel; 4.5m length made of zilcalloy melts at 2800ºC
    • Zircalloy reacts with water to generate hydrogen at 850ºC

1. 原子炉:

  • 1) 核結合エネルギー
    • 原子番号60で最大
    • 核分裂
    • 核融合
  • 2) 核分裂反応:
    • 生成中性子: 爆弾(>1)、
      原子炉 (=1)
    • ウラン原子
      • U238 (99.28%)
      • U235 (0.715%)
      • U234 (0.005%)
    • Pu239
      • 天然の核分裂生成物
        Gabonで発見
  • 3) 中性子減速材
    • 軽水
    • 重水
    • 黒鉛
    • ベリリウム
  • 4) 原子炉
    • 加圧水型軽水炉
    • 沸騰水型軽水炉
  • 5) BWRとPWRの特徴
    • BWRの圧力容器内圧力:
      70-80 atm
    • PWRの圧力容器内圧力:
      150 atm; 蒸気発生器あり
  • 6) ICRP: 国際放射線防御委員会
    • 1958: as low as possible
    • 1965: as low as practicable possible
    • recent: as low as readily achievable
  • 7) メルトダウン (炉心溶融):
    • 圧力容器;厚さ16cm鋼鉄、
      20m高さ×直径5-6m
    • 格納容器:
      厚さ3cm鋼鉄
    • 鋼鉄融解1535ºC
    • 核燃料棒:高さ4.5m、ジルコニウム合金、2800ºCで融解
    • ジルコニウム合金;850ºCで水と反応して水素発生

>Top 2. Nuclear fission:

  • 1) Type of radioactive decay: radioactivedecay
    Z=Atomic number; A=Atomic mass number
    • α decay:
      • Z-> Z-2; A-> A-4
      • Th232 -> Ra228 + α
    • β- decay:
      • Z-> Z+1; A-> A
      • Co60 -> Ni60 + β-
    • β+ decay:
      • Z-> Z-1; A-> A
      • Na22 -> Ne22 + β+
    • electron capture:
      • Z-> Z-1; A-> A
      • Cr51 -> V51 + X-ray
    • nuclear isomer transition:
      • Z-> Z; A-> A
      • Ba137 -> Ba137 + γ
    • spontaneous nuclear fission:
      • transuranic elements
  • >Top Gray and Sievert (Sv):
    • Sievert (Sv) is biological effect of absorbed dose (Gray)
    • 1 Sv = 1 J/kg = 1 m^2・S^-2 = 100 rem
    • 1 Sv = 1 Gy * W
      • Gy=gray, W=weighing factor
      • W=1 (e、e+, γ, X)
      • W=5 (n <10keV)
      • W=10 (n 10-100keV)
      • W=20 (n 100keV-2MeV)
      • W=20 (α、fission fragments)
      • Tissue type: skin=0.01; bladder, breast, liver =0.05, bone marrow, lung, stomach =0.12
    • Gastrointestinal series X-ray investigation: 14 mSv.
    • Lethal dose (LD): 50% LD (LD50) = 4Sv = 400 rem

2. 核分裂:

  • 1) 放射性崩壊の種類:
    • α崩壊
    • β- 崩壊
    • β+崩壊
    • 電子捕獲崩壊
    • 核異性体転移
    • 自発性核分裂:超ウラン元素
  • グレイとシーベルト:
    • シーベルトは、吸収線量による生物的効果

>Top Symptom of radiation amount:

  • 0.8-1.2 mSv/y Natural background radiation from granite
    1.26 mSv/y Radiation from Rn in the nature
    0.5 - 3 mSv X ray at stomach inspection
    7 mSv CT scan
    1 mSv/y

    Max. acceptable dose for general persons;
    (Death rate: 1/2500)

    1.3 mSv/3mo
    =0.6μSv/h
    =5.2 mSv/y

    Radiation Controlled Area (Japan)
    9 mSv/ y Airline crew (Tokyo-NY)
    20 mSv/y

    Dose limit for nuclear operating doctors/engineers; (Death rate 1/125);
    Evacuation directive in Fukushima; (Death rate 1/25)

    31 mSv/y Evacuees after 1986 Chernobyl disaster
    50 mSV/y Dose limit for nuclear plant worker (US NRC)
    100 mSv Dose limit for emergent case (original)
    150 mSv temporally become infertile
    250 mSv

    Decrease leukocyte;
    Dose limit for Fukushima emergent case (revised); (Death rate: 1/10)

    400 mSV/h Spike recorded at Fukushima N-Plant
    500 mSv Decrease lymphocyte
    1000 mSv Acute radiation sickness begins
    2000 mSv 5% dies
    4000 mSv 50% dies
    7000 mSv 100% dies
  • ICRP (International Commission on Radiological Protection):
    • as low as possible
    • >Top as low as reasonably achievable (ALARA)
    • LNT Hypothesis: 'Linear No Threshold' Hypothesis:
      no matter how small, may be capable of causing some biological damage or detriment.
  • >Top Neutron:
    • fast neutron: 14K km/s
      • a neutron moderator to slow down
      • average 2.5 neutrons per U-235
    • thermal neutron: 2.2 km/s
  • Nuclear product:
    • Hiroshima N-bomb: Uranium 800 g
    • 1MkW Nuclear plant: Uranium 1 ton/year
    • Nuclear Reprocessing Plant
      • COGEMA La Hague: UO2 800 ton + UO3 1000 ton/year
      • Rokkasho, Aomori, Japan: 800 ton/year
      • Tokaimura, Japan: 210 ton/year
  • Radiation Controlled Area:
    • External radiation: 1.3 mSv/3 months (=5.2 mSv/y)
    • Airborne radioactive radiation: 1/10 of External radiation
    • Surface contamination: 4 Bq/cm3 (α-ray: 40 Bq/cm3)
  • Radiation risk: 10 Person × mSv
    • Death by cancer (carcinoma) : Radiation sensitivity
  • Fallout of radioactive materials (mostly Cs-137):
    • Say, 45000 Bq/sq.m;
      Contaminated depth: could be 0.5cm.
    • Calculation:
    • 10K sq.cm x 0.5 cm = 5K cu.cm = 2.5K g
      45,000 Bq/sq.m =18 Bq/g
  • Thermal conductivity:
    • Water (300ºC) : 0.0068 J/cm・S・Cº
    • Na (500ºC): 0.67 J/cm・S・Cº (100 times more coductivity)

被爆限度:

  • ICRP (国際放射線防御委員会) の基準
  •  
    Adult
    Child
    ICRP
    1
    5
    J.W. Gofman
    4
    20
    • 一般人
      1 mSv/y
    • 放射線管理区域
      1.3 mSv/3ヶ月
      =0.6μSv/h
    • 原子力従事者
      20 mSv/y
    • 緊急事態
      100 mSv
    • 福島事故緊急事態
      250 mSv
  • 被曝量: <左表>
  • 中性子
  • 核生成物
  • 放射線管理区域
  • 放射能リスク:
    成人と子供
  • Cs-137降下物
  • 熱伝導率

>Top 3. Plutonium:

  • History:
    • first synthesized in 1940 by a team of Glenn T. Seaborg and Edwin McMilan at UC Berkely by bombarding U238 with deuterons.
    • The first nuclear test, "Trinity"on July16, 1945. (Manhattan Project)
    • The second one "Fat Man" was used to detonate Nagasaki City on Aug. 9, 1945, killing about 80K people. (Hiroshima City causalities by "Little Boy" was about 166K people on Aug.8, 1945)
    • 200,000 times more risky than uranium.
    • Japan now retains more than 40 kg plutonium from reprocession facility.
    • MOX fuel: 90% uranium + 10% plutonium.
  • Rokkashomura Reprocessing Plant: costed 2T yen.
  • Nuclear plant: life 40 years; Movement away from N-plant by 2050.
  • Separation of generating electric power and distribution electric power
    • Multiple costing system: Total cost × 3.5% = Power charge
    • Privatization of generation electric power
  • Synthesized isotopes:
    • U238 + D2 -> Np238 + 2n; Np238 -> Pu238 + β-
      • Np238 half-life 2.11d
    • U238 + n -> U239 -> Np239 + β- -> Pu239 + β-
      • U239 half-life 23.5m
      • Np239 half-life 2.35d
  • Name origin of Plutonium:
    • From Uranium - Neptune - Pluto: Uranium - Neptunium - Plutonium
  • General physical and chemical properties of Pu:
    • Pu has a bright silvery appearance like Ni, but it oxidizes quickly to a dull gray or yellowish gray (PuO2).
    • Pu is not a good conductor of heat and electricity.
    • Melting point is 640 degrees C, and boiling point 3,327 degrees C.
    • 20 different radioactive isotopes
    • Two Pu (Pu-239 and Pu-244) can be found in nature; a few parts per trillion are naturally found in some concentrated uranium ore, such as Okio, Gabon (natural nuclear fission reactor)

3. プルトニウム:

  • 1940年にG.T. Seaborg他によって合成
  • 合成同位体
  • プルトニウムの名称は、冥王星から。
    冥府の原子

>Top Physical properties of Pu produced by nuclear reactor (Power reactor grade):

  • Plutonium:
    • Pu238:
      • Half time 88years, radioisotope thermoelectric generator; decay, heat 560 W/kg; used to power some spacecraft like Cassini, Voyager and New Horizons).
      • Spacecraft:
        Voyagers launched in 1977 contains 500W Pu power source. Over 30 years it is still producing about 300 W.
      • Pu238 is not fissile but can undergo nuclear fission easily with fast neutrons.
    • >Top Pu-239:
      • fissile, most important; half-life 24,100 years; decay heat 1.9 W/kg;
      • with a half life of 24,100 years, about $11.5 \times 10^{12}$ of its atoms decay each second emitting 5.157 Me (9.68W)
    • Pu240: spontaneous fission; limits usability for weapons or reactor fuel and determines its grade, causing the risk of predetonation.
    • Pu241: fissile
    • Pu244: most stable; long lived half-life 80.8M years, found in trace quantities in nature; spontaneous fission and α emission.
  • >Top MOX fuel:
    • Spent nuclear fuel from normal light water reactors contains Pu-238, 239, 240, and 242.
    • Pu is irradiated in a reactor with low-speed thermal neutrons; causing excess Pu is discarded and forms longest-lived component of nuclear waste.
    • PUREX (Pu-U Extraction) reprocesses spent nuclear fuel to make MOX fuel for reuse in nuclear reactors, consists of 60 kg of Pu.
    • MOX fuel has been used since 1980s.
    • US and Russia agreed to dispose 34 tons of weapon grade Pu into MOX fuel in US by 2019.
    • Breeder reactors are designed to create more fissionable material than they consume. (× 1.2)
    • But to consume 1 unit of Pu fuel, it needs to load 8 units of Pu; thus 20% increase of Pu would be only 2.8%. It requires about 40 years to produce double amount of Pu.
  • Weapon-grade Pu :
    • Pu239 enriched 97-98% is used for Pu weapon.
    • Eg: one bomb core weighs 5.3kg, have ring-shaped of 11cm in diameter considering criticality safety.
    • The critical mass is calculated about 6.6kg (by RAND Corp, 1993), which is about a third of that of U-235.
    • Only 6.2 kg of Pu-239 can produce an explosion equivalent to 20K tons of TNT (Cf: Hiroshima A-bomb has 15K tons of TNT.)
    • Hypothetically, as little as 4 kg of Pu could be used to make a single A-bomb.
  • Pu stockpile (2007):
    • about 500 tons
    • Trinity weapon used 6.2 kg with overall weapon weighs over 4 tons. About 20% of Pu underwent fission, causing energy equivalent to 20K tons of TNT.
  • Pu toxicity:
    • Animal studies found that a few milligrams of Pu per kg of tissue is a lethal dose.
    • 1 μg affects a life expectancy of less than 10 years.
    • LET (Linear Energy Transfer):
      • LET of αray is 500 times than that of γray.
  • Puの物理・化学的性質

  Compo -sition % Half life
period (yr)
Decay fissile
by thermal neutrons
Pu238
< 2 87.74 α ×
Pu239
55-65 24,110 α
Pu240
20-25 6, 560 α ×
Pu241
10-15 14.4 β
Pu242
< 4-8 373,300 α ×
  • すぐに酸化し、黄灰色のPuO2
    • 熱・電気の伝導率低い
    • 融点640度C、沸点3,327度C
    • 20のPu同位体
    • 天然の核分裂(Gabon)で微量生成
  • 原子炉内で生成 (原子炉レベル)
    • 核分裂性はPu239とPu241
    • Pu-238の半減期88年
    • Pu-239の半減期24,100年
    • Pu-240の半減期6,560年
    • Pu-241の半減期14.4年
    • Pu-242の半減期373,300
  • MOX燃料 (プルサーマル燃料)
  • 核兵器級Pu
  • Pu蓄積
  • Puの毒性

>Top 4. Radiation energy:

  • Nuclear radiation:
    • Molecular binding energy: several eV
    • X-ray energy : 100 KeV
    • Cs137 γ-ray : 661 KeV
    • Pu239 α-ray:5.1 MeV
  • JCO Accident] 1mg U fission
  • Hiroshima A-bomb: 800g U
  • 1MkW N-Plant: 1000 t U
  • >Top Indemnity of Electric Power Utility:
    • Price-Anderson Law (US)
    • Japan: up to 120B Yen.
  • Dirty bomb:
    • radiological weapon which is made to contaminate with radioactive material by conventional explosives.
    • its purpose is to create mass panic and terror, and mass destruction, rendering areas partly unusable and causing economic damage.
  • >Top Cesium (Cs): silver-gold alkali metal, reacting with water even at -116ºC.
    • Cs-134: half-life 2.06 year; β decay 2.059 MeV; Daughter product Ba-134
    • Cs-137: half-life 30.17 year; β decay 1.174 MeV; Daughter project Ba-137
  • Portion of total radioactive dose (in air) by each isotope after the Chernobyl disaster: (Wikipedia) :<Figure to the right column>
    • Xe, I-131, Te-132/I-132, Ba-140/La-140, Zr-95/Nb-95, Others, Ru, Cs-134, Cs-137
    • Cs-137 become the largest source of radiation about 200 days after the accident.
  • Total fallout from Fukushima NPP:
    • 80 -100 x 10^16 = 10^18 = 1 Exsa Bq (becquerel)
    • ICRP (International Commission on Radioactive Protection)
      • Emergency exposure situations should be set in the band of 20-100 mSv rather than 1 mSv/year
      • a dose rising towards 100 mSv will almost always justify protective measure.
  • >Top Dose limit: by ICRP with ALARA (a low as reasonably achievable) principle.
    • 1 mSv/yr:
      Public dose limits are usually set at 1 mSv/yr above background.
      • Precautionary principle:
        adverse effect under 100 mSv/yr is not medically clear; therefore it is extrapolated linearly from the effect of 100 mSV/yr, which may cause cancer at 5/1000; i.e. 1 mS/yr may cause cancer at 5/100, 000
      • Clearance level:
        1mSV/yr should be total dose limit; therefore the lime of each source should be muck less than the total limit, eg., 1/100 limit = 10μSv/yr.
      • Cs134+Cs137 limit:
        Within the limit dose 1mSv/yr, cesium contained foods should be within 51.38 Bq/kg.
      • Dilution ratio:
        • if 1.0 = the limit would be 30 Bq
        • if 0.1 = the limit would be 300 Bq
    • 5 mSv/yr: Now Japanese "Provisional limit" of Cs:
      • Calculation of possible annual dose:
        1. Cs: 5 mSv/y
        2. Other than Cs: 5 mSv/y
        3. Air sol: 0.5 μSv/h (=4.4 mSv/y)
        4. House dust: 0.5. μSv/h (=4.4 mSv/y)
        • Total 1-4: 18.8 mS/y
    • 20 mSv/yr averaged over 5 years, with a max 50 mSv in any one year.
    • 250 mSv/yr:
      Does limit applied to workers during Fukushima emergency.
  • Ford Pint Memo:
    • 1977: Ford allegedly was aware of the design flaw, and decided it would be cheaper to pay off possible lawsuits for resulting deaths. Ford compared the cost of an $11 repair against the monetary value of a human life.

4. 放射線エネルギー:

  • 放射線被曝:
    • 分子結合エネルギー:数 eV
    • X線エネルギー:〜100 KeV
    • Cs137 γ-ray: 661 keV
    • Pu239 α-ray: 5.1 MeV
  • JCO事故:1mg U核分裂
  • BEIR-VII Report (2005)
  • 電力会社の免責
    • 米国Price-Anderson法
    • 日本:1200億円
  • 汚い爆弾:
    • 放射性物質による汚染を目的とした爆弾
    • 大量のパニックと恐怖を目的として、一部地域を使用不能として経済的損害を与える。
  • セシウム:銀金色のアルカリ金属。-116ºCで水と反応
    • セシウム134: 半減期2年
    • セシウム137: 半減期30年
  • 放射性元素の推移(チェルノブイリの場合): <下図>

radiationdose

 

 

 

 

 

  • 福島原発からの総放量
  • 1mSV/y基準の意味:
    • 予防原則
    • ALARAの原則
    • クリアランスレベル
    • Csの制限
    • 希釈率
  • 日本の暫定基準値: 5mSv/y
    • 合計被爆値か
    • Csだけの上限か
    • この場合、結果的には18.8 mSV/y程度になる。
  • フォードピント事件
    • 原因が判明しているにもかかわらずリコール代と事故時の補償額とを比較 (禁じ手)
    • 原発もリコールの対象?

>Top 5. Nuclear Fuel Cycle: N_fuelcycle

  • The fuel volume is based on 1,000MWh nuclear power plant.
  • This is the flow of uranium fuel, starting from uranium ore mining:
  • Upper stream: the flow up to nuclear power plant.
  • Down stream: the flow from nucalear power plant
  • Plutonium appears in the down stream as a byproduct of spent fuel. But now plutonium became the leading player in the fuel cycle.
  • US abandaned this fuel cycle, adopitng 'one through' usage of uranium.

5. 核燃料サイクル:

  • 原発の副産物であったプルトニウムは、核燃料サイクルの中では主役
  • 核物質のフローは、100万kWの原発を基準とした数量
Comment
  • Proposal for basic energy policy
    • More rational discussion including sharing information
    • Less energy life style
    • Cyclical natural energy: wind power, solar photovoltaic power; tidal power; geothermal power; biomass power
    • Movement away from nuclear energy power, in particular, use of plutonium by nuclear cycle
  • >Top Abolishment of Rate of Return regulation:
  • Separation of generation and distribution of electricity
  • Promotion of smart grid
  • Hiroaki Koide of Kyoto Univ. stated at the hearing of the Upper House in Japan, quating Mahatma Gandhi's word of waring: Seven blunders of the world:
    • Politics without principle
    • Wealth without work
    • Pleasure without consience
    • Knowledge without character
    • Commerce without morality
    • Science without humanity
    • Worship without sacrifice
  • 基本エネルギー政策への提言
    • さらに合理的な議論、情報共有を含む)
    • 省エネルギーライフスタイル
    • 循環型自然エネルギー:風力、太陽光、潮力、地熱発電
    • 脱原子力発言、特に核燃料サイクルによるプルトニウム利用
  • 総括原価方式の廃止
  • 送電と配電の分離
  • スマートグリッドの推進
  • 小出裕章氏の引用:ガンジーの7つの罪
    • 理念なき政治
    • 労働なき富
    • 良心なき快楽
    • 人格なき知識
    • 道徳なき商業
    • 人間性なき科学
    • 検診なき崇拝
   

| Top | Home | Article | Bookshelf | Keyword | Author | Oxymoron |